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The Goal of QEC

Quantum error correction is the bridge between noisy,

physical devices and large-scale, fault-tolerant logical

computers.

Requirements:

➢ Memory: encode and protect logical information

against noise;

➢ Computation: fault-tolerant, universal control of

encoded information.

Wish to achieve both in low overhead.

IBM quantum computer.



Topological Codes

Topological codes: encode information on surfaces

of geometric manifolds.

Pivotal examples: surface code and color code.

➢ Encode one logical qubit into 2D lattice of

physical qubits,

➢ Logical Clifford gates can be done transversally.

Exciting recent experiments:

• Sub-threshold surface code memory (Google)

• Lattice surgery on color code (Google)

• Magic state distillation with color code (QuEra)
Surface code and 2D color code.

* Surface code figure cred. Niel de Beaudrap



Computation with Transversal Gates

Transversal Gates: Apply gate 𝒰 on all physical qubits

→ enact 𝒰 on all logical qubits.

➢ Inherently fault-tolerant and low overhead.

➢ Generalization: constant-depth circuit on physical

qubits → non-trivial action on logical qubits.

CSS Codes: CNOT is transversal.

2D color code: H, S are transversal.

3D topological codes: T/CCZ can be transversal.

Limitation by Eastin-Knill: no quantum code support

universal computation transversally.



High-Rate Codes as Compact Memory

Topological codes encodes O(1) logical qubits into

2D/3D lattice of physical qubits.

➢ Significant space overhead: 𝑂 𝑑2 ~ 𝑂 𝑑3 .

High-rate codes, notably QLDPC codes, serves as 

memories with constant space overhead.

- Bivariate Bicycle codes

- Hypergraph product codes

- Lifted/balanced product codes 

→ asymptotically good QLDPC codes

How do we perform logical computation?



New Challenge: Addressable Computation

With high-rate memory, want to control every logical qubit 

universally. 

➢ Addressable gates in low-overhead.

Existing works on constant-depth gates focuses on global 

gates:

➢ Automorphism gates and ZX-Duality [2202.06647]: 

Clifford circuit on all (or most) logical qubits

➢ Multiplication property & cup product: non-Clifford

phase gates on all (or most) logical qubits.

These gates are useful but far from sufficient. 

Can we do better? How much better can we do? This is

interesting for both theoretical and practical purposes.

Automorphisms on the [144, 12, 12] BB code, fig. cred. IBM



This Talk: Transversal, Addressable CCZ Gates

Main Result: First family of codes to support transversal,

addressable CCZ gates. Our codes are asymptotically good.

Wait, what does that mean?

➢ Given any triple of logical qubits in one or multiple code

block(s), we have a depth-1 circuit of physical CCZ gates

which implements the logical CCZ on the triple.

Our results are constructed over qudits and then converted

to qubits. Also generalized to 𝐶ℓ𝑍 gates and more.
Addressable CCZ gate on any triple of qubits

in one or more blocks
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Qudits over Finite Fields

We work with 𝑞 = 2𝑠-dimensional qudits and later embed into qubits.

➢ Consider the field 𝔽𝑞. The computational basis states of a qudit is labelled

by field elements, |𝜂⟩ for 𝜂 ∈ 𝔽𝑞.

➢ The field has a canonical trace function, 𝑡𝑟: 𝔽𝑞 → 𝔽2.

➢ Can define qudit Pauli gates naturally:

➢ CCZ gate is defined as

➢ Compare with CCZ over qubits:

𝐶𝐶𝑍𝑞
𝛽
𝜂1 𝜂2 𝜂3 = −1 𝑡𝑟(𝛽𝜂1𝜂2𝜂3) 𝜂1 𝜂2 𝜂3

𝐶𝐶𝑍2 𝑥1 𝑥2 𝑥3 = −1 𝑥1𝑥2𝑥3 𝑥1 𝑥2 𝑥3

𝑋𝛽 𝜂 = 𝜂 + 𝛽 , 𝑍𝛽 𝜂 = −1 𝑡𝑟(𝛽𝜂)|𝜂⟩



Logical CCZ on Qudit CSS Codes

Qudit CSS codes: X and Z stabilizers defined by parity-check

matrices over 𝔽𝑞.

For a logical basis state 𝑢 , 𝑢 ∈ 𝔽𝑞
𝑘, the encoded state is

Matrix over 𝔽𝑞. The rows represent X-type

stabilizers and logical operators.

where 𝑆𝑋 is the X stabilizer group and 𝑔𝑎 denotes the X

logical operators.

For 𝐴, 𝐵, 𝐶 ∈ [𝑘], the targeted logical CCZ gate is

We’ll focus on constructing the X matrix (left figure).



Reed-Solomon Codes

Reed-Solomon codes: evaluation of polynomials. One of the

most celebrated and studied classical codes.

Let 𝛼 = {𝛼1, 𝛼2, ⋯ , 𝛼𝑛} be a set of points in 𝔽𝑞, define

𝔽𝑞 𝑋
<𝑚 denote all the single-variable polynomial of degree

at most m over 𝔽𝑞. Observe that 𝑞 > 𝑛.

Generator matrix of  𝑅𝑆𝑚 𝛼 .

Given two vectors u and v, define 𝑢 ⋆ 𝑣 as their coordinate-

wise product. Then for two polynomials f and g,

𝑓 𝛼 ⋆ 𝑔 𝛼 = (𝑓𝑔)(𝛼)



Punctured Reed-Solomon Codes

Let 𝕂 ⊆ 𝔽𝑞 be a subfield. We will choose 𝛼 = {𝛼1, 𝛼2, ⋯ , 𝛼𝑛}

from 𝕂, and another set 𝛽 = 𝛽1, 𝛽2, ⋯ , 𝛽𝑘 from a coset 𝜁 + 𝕂.

We can row-reduce the generator matrix of 𝑅𝑆𝑚 𝛼 ∪ 𝛽 .

𝐺 is the generator matrix of the 𝛽-punctured RS code.

Row-reduced generator matrix of 𝑅𝑆𝑚 𝛼 ∪ 𝛽 .

𝐺

𝐺0

𝐺1



CSS Code from Punctured RS Code

To define a quantum CSS code:

➢ Let 𝐺⊥ be the Z-stabilizers 𝐻𝑍;

➢ Let 𝐺0 be the X-stabilizers 𝐻𝑋.

➢ Rows of 𝐺1are now X logical operators.
𝐺1

𝐺0

Enumerate the rows of 𝐺 as 𝑔𝑎 for 𝑎 ∈ [𝑚], and let ෤𝑔𝑎 denote

the corresponding polynomial. Note that 𝑔𝑎 is restricted to 𝛼,

while ෤𝑔𝑎 is also defined on 𝛽.

Code Q has k logical qubits.

For a logical state 𝑣 , 𝑣 ∈ 𝔽𝑞
𝑘, the encoded state is



Key Facts

𝐺1

𝐺0

Fact 1: Polynomial Interpolation

For any logical qubit indexed by 𝐴 ∈ [𝑘], there exists

Γ1
𝐴, ⋯ , Γ𝑛

𝐴 ∈ 𝔽𝑞 ∖ {0} such that

෍

𝑖∈[𝑛]

Γ𝑖
𝐴𝑔 𝛼𝑖 = 𝑔(𝛽𝐴)

for any polynomial 𝑔 of degree less than n-1.

Fact 2: Linear transitivity

Given two logical qubits indexed by 𝐴, 𝐵 ∈ [𝑘], there is

Δ𝐴𝐵 ∈ 𝕂 such that 𝛽𝐴 + Δ𝐴𝐵 = 𝛽𝐵.



Main Result

𝐺1

𝐺0

Fact 1: Polynomial Interpolation

For any logical qubit indexed by 𝐴 ∈ [𝑘], there exists

Γ1
𝐴, ⋯ , Γ𝑛

𝐴 ∈ 𝔽𝑞 ∖ {0} such that

෍

𝑖∈[𝑛]

Γ𝑖
𝐴𝑔 𝛼𝑖 = 𝑔(𝛽𝐴)

for any polynomial 𝑔 of degree less than n-1.

Fact 2: Linear transitivity

Given two logical qubits indexed by 𝐴, 𝐵 ∈ [𝑘], there is Δ𝐴𝐵
∈ 𝕂 such that 𝛽𝐴 + Δ𝐴𝐵 = 𝛽𝐵.

Theorem: Transversal Addressable Logical CCZ

For any three logical qubits indexed by 𝐴, 𝐵, 𝐶 ∈ [𝑘], we have 𝐶𝐶𝑍𝑞 𝐴, 𝐵, 𝐶 = ς𝑖∈[𝑛]𝐶𝐶𝑍𝑞
Γ𝑖
𝐴

[𝛼𝑖 , 𝛼𝑖 + Δ𝐴𝐵 , 𝛼𝑖 + Δ𝐴𝐶].



Main Result

Theorem: Transversal Addressable Logical CCZ

For any three logical qubits indexed by 𝐴, 𝐵, 𝐶 ∈ [𝑘], we have 𝐶𝐶𝑍𝑞 𝐴, 𝐵, 𝐶 = ς𝑖∈[𝑛]𝐶𝐶𝑍𝑞
Γ𝑖
𝐴

[𝛼𝑖 , 𝛼𝑖 + Δ𝐴𝐵 , 𝛼𝑖 + Δ𝐴𝐶].

Note: If there is a code with transversal, global CCCZ gate,

then it also have O(1)-depth local logical CCZ gate.

Let 𝐶𝐶𝐶𝑍1234[𝑖] denote a logical CCCZ acting on the 𝑖th

logical qubit of 4 separate code blocks.

ෑ

𝑖=1

𝑘

𝐶𝐶𝐶𝑍1234[𝑖] 𝑋1[𝑖]ෑ

𝑖=1

𝑘

𝐶𝐶𝐶𝑍1234[𝑖] = 𝑋1[𝑖] 𝐶𝐶𝑍234[𝑖]

Since Pauli is always transversal, we get a logical CCZ

implementation. This CCZ is much less addressable.

Conjugate Pauli X by

global CCCZ to implement

weakly addressable CCZ
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Proof of Main Result

Theorem: Transversal Addressable Logical CCZ

For any three logical qubits indexed by 𝐴, 𝐵, 𝐶 ∈ [𝑘], we have 𝐶𝐶𝑍𝑞 𝐴, 𝐵, 𝐶 = ς𝑖∈[𝑛]𝐶𝐶𝑍𝑞
Γ𝑖
𝐴

[𝛼𝑖 , 𝛼𝑖 + Δ𝐴𝐵 , 𝛼𝑖 + Δ𝐴𝐶].

For a logical state 𝑣 , 𝑣 ∈ 𝔽𝑞
𝑘, the encoded state is

It suffices for us to show that the physical circuit

accumulates a −1 𝑡𝑟(𝑣𝐴𝑣𝐵𝑣𝐶) phase on each state

in the superposition.

𝐺1

𝐺0 Let us rewrite ℎ as a linear combination of rows

in 𝐺0. Then there is a vector 𝑢 such that

where 𝑢𝐴 = 𝑣𝐴 for all 𝐴 ∈ 𝑘 .



Proof of Main Result

Want to show: ς𝑖∈[𝑛]𝐶𝐶𝑍𝑞
Γ𝑖
𝐴

𝛼𝑖 , 𝛼𝑖 + Δ𝐴𝐵 , 𝛼𝑖 + Δ𝐴𝐶 | σ𝑎=1
𝑚 𝑢𝑎𝑔

𝑎⟩ = −1 𝑡𝑟(𝑢𝐴𝑢𝐵𝑢𝐶)| σ𝑎=1
𝑚 𝑢𝑎𝑔

𝑎⟩. 

The phase from a single CCZ gate 𝐶𝐶𝑍𝑞
Γ𝑖
𝐴

𝛼𝑖 , 𝛼𝑖 + Δ𝐴𝐵 , 𝛼𝑖 + Δ𝐴𝐶 on state | σ𝑎=1
𝑚 𝑢𝑎𝑔

𝑎⟩ is

Recall that 𝑔𝑎 denote the rows of 𝐺, which corresponds to polynomials ෤𝑔𝑎. Let us write a new polynomial:

Then the total phase exponent accumulated from the circuit is



Proof of Main Result

Want to show: 𝑡𝑟(σ𝑖=1
𝑛 Γ𝑖

𝐴 ⋅ ෤𝑔 𝑢 𝛼𝑖 ⋅ ෤𝑔 𝑢 𝛼𝑖 + Δ𝐴𝐵 ⋅ ෤𝑔 𝑢 𝛼𝑖 + Δ𝐴𝐶 ) = 𝑡𝑟(𝑢𝐴𝑢𝐵𝑢𝐶)

Let’s again define a new polynomial:

𝑓 𝑥 = ෤𝑔 𝑢 (𝑥) ⋅ ෤𝑔 𝑢 (𝑥 + Δ𝐴𝐵) ⋅ ෤𝑔
𝑢 (𝑥 + Δ𝐴𝐶)

Since ෤𝑔 has degree < 𝑚, 𝑓 has degree less than 3𝑚, 

which is less than 𝑛 − 1 if we choose 𝑚 < 𝑛/3.  

Fact 1: Polynomial Interpolation

For any logical qubit indexed by 𝐴 ∈ [𝑘], there exists

Γ1
𝐴, ⋯ , Γ𝑛

𝐴 ∈ 𝔽𝑞 ∖ {0} such that

෍

𝑖∈[𝑛]

Γ𝑖
𝐴𝑔 𝛼𝑖 = 𝑔(𝛽𝐴)

for any polynomial 𝑔 of degree less than n-1.

Applying Fact 1, we have

෍

𝑖=1

𝑛

Γ𝑖
𝐴 ⋅ ෤𝑔 𝑢 𝛼𝑖 ⋅ ෤𝑔 𝑢 𝛼𝑖 + Δ𝐴𝐵 ⋅ ෤𝑔 𝑢 𝛼𝑖 + Δ𝐴𝐶 = ෍

𝑖=1

𝑛

Γ𝑖
𝐴 ⋅ 𝑓(𝛼𝑖) = 𝑓 𝛽𝐴 = ෤𝑔 𝑢 𝛽𝐴 ⋅ ෤𝑔 𝑢 𝛽𝐵 ⋅ ෤𝑔 𝑢 𝛽𝐶

What is ෤𝑔 𝑢 𝛽𝐴 ? 



Proof of Main Result

Want to show: ෤𝑔 𝑢 𝛽𝐴 ⋅ ෤𝑔 𝑢 𝛽𝐵 ⋅ ෤𝑔 𝑢 𝛽𝐶 = 𝑢𝐴𝑢𝐵𝑢𝐶

Recall that ෤𝑔 𝑢 𝛽𝐴 = σ𝑎=1
𝑚 𝑢𝑎 ෤𝑔𝑎 𝛽𝐴 , where 𝛽𝐴 is 

from the punctured indices, where we performed 

row-reduction on 𝐺. 

We have an identity matrix at 𝛽, therefore

➢ σ𝑎=1
𝑚 𝑢𝑎 ෤𝑔𝑎 𝛽𝐴 = 𝑢𝐴

Same statement is true for 𝛽𝐵, 𝛽𝐶, and our proof is 

complete.  

𝐺1

𝐺0



Taking a step back… 

Our proof critically relies on Fact 1 and 2.

➢ Interpolation enables us to address ‘logical’

indices of a polynomial through its ‘physical’

indices;

➢ Transitivity lets us shift the ‘logical’ indices we

are addressing by shifting ‘physical’ indices.

Both properties arise from the polynomial

codewords of Reed-Solomon codes.

Fact 1: Polynomial Interpolation

For any logical qubit indexed by 𝐴 ∈ [𝑘], there exists

Γ1
𝐴, ⋯ , Γ𝑛

𝐴 ∈ 𝔽𝑞 ∖ {0} such that

෍

𝑖∈[𝑛]

Γ𝑖
𝐴𝑔 𝛼𝑖 = 𝑔(𝛽𝐴)

for any polynomial 𝑔 of degree less than n-1.

Fact 2: Linear transitivity

Given two logical qubits indexed by 𝐴, 𝐵 ∈ [𝑘], there is

Δ𝐴𝐵 ∈ 𝕂 such that 𝛽𝐴 + Δ𝐴𝐵 = 𝛽𝐵.

Theorem: Transversal Addressable Logical CCZ

For any three logical qubits indexed by 𝐴, 𝐵, 𝐶 ∈ [𝑘], we have 𝐶𝐶𝑍𝑞 𝐴, 𝐵, 𝐶 = ς𝑖∈[𝑛]𝐶𝐶𝑍𝑞
Γ𝑖
𝐴

[𝛼𝑖 , 𝛼𝑖 + Δ𝐴𝐵 , 𝛼𝑖 + Δ𝐴𝐶].



Code Parameters

The 𝑛, 𝑘, 𝑑
𝑞

CSS code we constructed from punctured RS 

matrix is

• Asymptotically good: 𝑘, 𝑑 = Θ 𝑛 ,

• over a growing qudit field 𝔽𝑞, where 𝑞 = 2𝑠 > 𝑛.

Embed into a qubit code with multiplication friendly codes

(MFE) [N’24], [GG’24]

➢ Addressable logical CCZ over qubit code, loses poly-log

factors in k and d.

Upgrade to transitive algebraic geometry codes

➢ Asymptotically good codes over qubits. [To appear]

q ⋮

Individual

qudit
Qubits

Multiplication

friendly code
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A Long History of Algebraic Constructions

Triorthogonal matrices

and codes [BH’12]

Punctured algebraic codes

and diagonal non-Clifford

gates over qudits [KT’19]

Asymptotically good qubit

code with O(1)-depth CCZ

[N’24], [GG’24], [WHY’24]

Constant overhead magic

state distillation [WHY’24]

Asymptotically good qubit

code with transversal,

addressable CCZ

Addressable orthogonality

for diagonal non-Clifford

gates over qubits

Prior work

This work

More constructions that

use classical matrices as

black-boxes.



Future Directions

Many exciting problems to be explored.

Can we construct LDPC codes with addressable non-Clifford gates?

➢ What is the best asymptotic parameter we can get?

Can we construct (LDPC) codes with addressable Clifford gates?

➢ Great progress in [2502.07150], but inverse-exponential rate.

Are there upper bounds on code parameters given powerful transversal gates?

Can we construct high-rate codes with (addressable) T gate?

➢ T gate produces a 𝜋/4 phase, which is more fine-grained than CCZ.

Can we find practical constructions with addressable non-Clifford gates?



Quantum Codes with Addressable and Transversal Non-Clifford Gates

Zhiyang He (Sunny)1, Vinod Vaikuntanathan2, Adam Wills3, Rachel Yun Zhang2

1 Math, 2 Computer Science, and 3 Physics Departments of MIT

Slides:


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

