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Prelude: A Summer Day in Benasque
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Fault-Tolerant Quantum Technologies (FTQT) Workshop in Benasque, Spain, 2024



Fault-Tolerant Quantum Technologies Workshop

Chris Pattison

Kenneth Brown

In breakout sessions, we are
assigned into small groups and
asked to write down questions
we’d like to understand better
through this workshop.

Ken asked the first question in
our group:
What is Fault Tolerance?
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The Promise of Fault-Tolerance

We want to run large quantum algorithms, but how large? n=p-q
» Circuit volume = Width (space) X Depth (time), V = WD.
» Fault-tolerant execution — gate error rate at ©(1/V).

» Factoring 2048-bit: around 105 qubit-steps.

Quantum error correction
will bridge this gap!

Physical error

What large-scale quantum
rates today

algorithms require
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Encoded Computation

Encode raw qubits/gates/error rates into error-corrected qubits/gates/error rates.
» Space overhead: W /W, Time overhead: D’/D.
» Often measured in terms of physical circuit volume V, specifically log(V).

»
»

Depth D | Circuit C Depth D’

gates with QEC circuit C,

[
»

Qubits W

Qubits W’

Encode qubits and Encoded —



What is Quantum Fault-Tolerance?

Gold Standard: Existence of a constant noise threshold ¢, such that if the physical
noise strength is below €, we can realize arbitrarily large computation fault-
tolerantly (with certain overheads).

Threshold theorem for quantum computation: A quantum circuit containing
p(n) gates may be simulated with probability of error at most € using

O(poly(log p(n)/€)p(n)) (10.116)

gates on hardware whose components fail with probability at most p, provided p is
below some constant threshold, p < pwm, and given reasonable assumptions about
the noise in the underlying hardware.

Threshold Theorem from Nielsen & Chuang

Formally, this means that there is a family of encoding schemes (we will call them
FT schemes) that achieve arbitrarily low encoded error rate at growing costs.

Great! So what’s unclear about this? Looks like a reasonable theorem?



What is Quantum Fault-Tolerance?

Threshold theorem for quantum computation: A quantum circuit containing
p(n) gates may be simulated with probability of error at most € using

O(poly(log p(n)/€)p(n)) (10.116)

gates on hardware whose components fail with probability at most p, provided p is
below some constant threshold, p < pw, and given reasonable assumptions about
the noise in the underlying hardware.

So what’s unclear about this? Looks like a reasonable theorem?

» What’s the noise model? Locally stochastic? Independent Pauli error?
Adversarial? Coherent Noise?

» What are the computation assumptions? Free & noiseless classical
compute, or more thorough analysis?

» Most significant issue: Really hard to prove rigorously! Most papers
propose new techniques, but do not prove threshold theorem. Instead,
they justify FT in other ways.



FT or not FT, That is The Question

E.g.: Logical computation gadgets on LDPC codes. Lots of recent papers
proposing many interesting ways of performing encoded computation on
high-rate quantum LDPC codes.

Performing logical computation on QLDPC memory has been a long standing challenge in theory
and in practice, with extensive research proposing many schemes [BB24, BCG'24, QWV23, [ES24,
ZSP*23, SPW24, BDET24, HKZ24, Lin24, GL24, MGF'25, BMD(9, 'VB22, BVC"17, LB18, JO19,
KP21,CKBB22, SKW 24, CB24, Cow24, CHRY24, WY24, SJOY24,IGND24, ZL.24, CHW Y25, HIOY23,
XZZ124, BGH" 25, HCWY25, YSR"25].

They all justify fault-tolerance, but with different definitions, assumptions,
and noise models. As a result, they cannot be easily combined in a

rigorous fashion. This is a lack of composability.

What other notions of FT have we been using?



Quantum Fault-Tolerance Alignment Chart

Lawful Neutral Chaotic
(Rigorously proved) (Less based on proofs)
Good o
T —— Threshold under Circuit has large Experimental data

convince others)

stochastic noise

spacetime distance

Neutral

Input/Output behavior
of circuit under noise

Code has large distance

Numerical simulations

Evil
(Uncommon, hard to
derive and/or convince)

Threshold under
coherent noise

Fault-Tolerance in
Amortization

“This looks FT ©”




Goal: Rigorous, Composable Quantum Fault-Tolerance

Our work: a mathematical framework for proving

threshold theorems that

> Enables composition of complex, drastically
distinct gadgets

» Re-establishes several well-known threshold
results in the same language

» Separates the probabilistic analysis of noise
model from the combinatorial analysis of
error propagation.

By making fault-tolerance composable, future
works can continue to prove new gadgets, and
compose with existing library to derive rigorous
threshold theorems for novel FTQC schemes.

We bring standard results

) closer to the lawful side
|
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Goal: Rigorous, Composable Quantum Fault-Tolerance

Building on the groundwork established by the

formalism, we prove (or reprove):

» Constant overhead FTQC via LDPC codes

» First written proof (?) of a threshold theorem
using surface code + distillation

» A threshold theorem for surface code FTQC
under coherent noise

Many possible future works, which we will
discuss at the end.

We bring standard results

) closer to the lawful side
|
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And un1f1es many results
in the lawful camp.
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Circuits, Environment and Faults

To capture different noise and computation

models, we consider a general model of circuit

and fault:

» Circuit has quantum and classical registers,
inputs, gates, and outputs.

» Faults in the circuit interact with an
‘environment circuit’.

» Faults are inserted before and after gates.

Environment circuit
While the faults are unitary in the global space,
their actions when restricted to the logical
workspace can be non-physical!

Faults happen between gates



Circuits, Environment and Faults

What is a fault mathematically? We start with an error channel:
&(p) = (1 = p)p + pKipK| + pKopKT + ...
And insert errors between gates:

eoe G4o%0G3o%oG20%OGI(|X)(X|)

= ) (pmpﬂz---) ( UK, U;K, Uy K, Uy |x)(x]| )
HisHos- -
These K are superoperators (interacting with external environment), they are the faults. Our
final circuit looks like:

C(|x)x]) =)} Pr(b) CIFI(| x)¢x|)

faults f

We can then analyze C[f] as a fixed circuit, where the faults are inserted deterministically.



Capturing Faults by Sets

Given a fixed faulty circuit C[f], how does f affect the
execution? Conceptually, the locations which f corrupt are
critical: some failure locations can be corrected, while
other cannot. We capture this intuition as follows:

Definition: Avoiding Sets
Given a set of locations/qubits [n], a family of bad sets F is
a subset of the powerset of [n].
FcP{l,..,n})
For a set E € [n], we say that E is F-avoiding if
VSeF,SZLE.




Capturing Faults by Sets

Definition: Avoiding Sets
Given a set of locations/qubits [n], a family of bad sets F is
a subset of the powerset of [n].
FcP{l,..,n})
For aset E < [n], we say that E is F-avoiding if
VSEF,SLE.

Example: on a [n,k,d] error correcting code, define F to be
all sets from which a minimum weight decoder cannot
recover. Then all errors E that is F-avoiding are
recoverable, and can be considered ‘good errors’. We can
picture this on a d=2 rotated surface code.

E

E is F-avoiding

Ay




Capturing Faults by Sets

Definition: Avoiding Sets — :
Given a set of locations/qubits [n], a family of bad sets F is e ===t
a subset of the powerset of [n]. i:{'. :' = ; i:_:'l_:
|x)(x| —> SiSsSsminsin === > /out

FcP{l,..,n}) = — -

For a set E € [n], we say that E is F-avoiding if = g = : = = ;
VSEF,SLE. |
Cr1lf]

Example: for a circuit Cgr that is encoding an ideal circuit C, [n]
would be the spacetime locations where fault could occur. The
bad sets F would be ‘witnesses of failed circuit execution’.

If f is F-avoiding, then the circuit was ‘successful’ and correct: CFT[f]( | x){x]| ) = (const.) - C ( | x) (x| )

It’s hard to argue about the correctness of one big circuit. Let’s
capture correctness modularly.
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What’s a Gadget?

Recall that there is a circuit C we wish to implement with low
error rate, and we need to encode C into a bigger circuit, Cyr.

a)

Every qubit of C will be encoded in error-correcting codes in

Crr. Similarly, every gate of C will be encoded into a gadget,

which is a sub-circuit of Cgr.

» Example: a CNOT gate in C may be encoded into a
transversal CNOT in Cgr.

Transversal CNOT. Fig. credit 2408.01393



What’s a Gadget?

Concretely:

> In C, a gate g acts on some set of qubits Q.

> In Cgr, the corresponding gadget C, acts on error-
correcting code blocks which encode Q.

When there is no error/fault, C, correctly performs g on
encoded qubits.
What if there are errors? How can we say C, is FI°?

Transversal CNOT. Fig. credit 2408.01393



Errors on Input and Output Codes

E

Let’s start by looking at the input/output of a gadget.
They are states in quantum codes, impacted by
errors on qubits.

Definition: Code Type

A code is specified by two pieces of data:

» Anencoding unitary ene, and —

» A family of bad error supports B, such that if an E is F-avoiding
error E is B-avoiding, then E can be recovered
using the encoding unitary enc. ) _ _

We say that (enc, B) is a code type. ' < . < . /

For a gadget, a ‘good input’ would be one where the F <
error E is B-avoiding. Otherwise it’s a ‘bad input’.




Fault-Tolerant Gadgets

Besides input errors, faults can corrupt the physical gates
in the gadgets, introducing more noise into the system.

We say that a gadget is FT if, under bounded noise, it maps
good input to good output.

Definition: FT Gadget (Part 1)
A gadget for a gate g is specified by a circuit C, with locations L

and a family of bad fault paths F € P(L). Transversal CNOT and error propagation.
Fig. credit 2408.01393

Given a ‘good fault’ f that is F-avoiding:
1.  On an input state enc(p) with a ‘good error’, C,[f] outputs
the state enc(g(p)) with a (different) ‘good error’.




Fault-Tolerant Gadgets

Definition: FT Gadget (Part 1) Pin —— Pout
A gadget for a gate g is specified by a circuit C, with locations L T T
and a family of bad fault paths F < P(L).

Given a ‘good fault’ f that is F-avoiding:
1. Onaninput state enc(p) with a ‘good error’, C,[f] outputs M Cg ‘_’
the state enc(g(p)) with a (different) ‘good error’. Pin ! > Pout

Remarks:
» This is a completely combinatorial definition! Eill Eout
Everything is bounded in terms of sets.
» Different gadgets with compatible input/output codes ~ Cg[f] x
can be easily composed! More on that later. Pin ! > Pout




Fault-Tolerant Gadgets

What if the input state is bad?

Definition: FT Gadget (Part 2)

Given a ‘good fault’ f that is F-avoiding;: B l [] YU U TRY

1.  Onaninput state enc(p) with a ‘good error’, C,[f] outputs R EBU UTI N G?
the state enc(g(p)) with a (different) ‘good error’. .
2. Onaninput state enc(p) with a ‘good error’, C,[f] outputs -

enc(o) with a ‘good error’, where o can be arbitrary. s s T

We call this second condition ‘friendliness’. This is a reset
mechanism that catches irrecoverable errors. Not all gadgets
need to be friendly — this is an optional property.



Gadgets on Fire

What if the fault fis bad?
» The gadget failed, and there is no guarantee. The
output state is automatically treated as ‘bad’.

However, that doesn’t always mean failure for the global

computation — a local gadget failure may be corrected by
other successful gadgets, especially when we do recursive
simulation!



Recursive Simulation

Concatenation: Given circuit C, we first encode into

Cir, then further encode CZ; into CZ7, so on and so

forth.

» Time-tested idea in classical and quantum error
correction.

> Failure of gadgets in CZ; correspond to failure of
gates in C#;, which is correctable in C3;.

This recursive simulation method, sometimes called
level reduction, can be derived using our definitions
(see Theorem 4.11).

First
level
encoding

Second
level
encoding

Second
level
encoding

Second
level
encoding

Concatenated encoding scheme,

Nielsen & Chuang




Fault Tolerance as a Combinatorial Property

Challenge: F can be very complicated for a big

circuit, this definition is useless if we can’t

properly describe F!

» How can we build these bad fault paths and
bound their probabilities?

» What happen to these bad fault paths when
we compose gadgets, or do recursive
simulation?

Definition: FT Gadget
A gadget for a gate g is specified by a circuit C, with locations L
and a family of bad fault paths F < P(L).

Given a ‘good fault’ f that is F-avoiding:
1. Onaninput state enc(p) with a ‘good error’, C,[f] outputs
the state enc(g(p)) with a (different) ‘good error’.

2. Onaninput state enc(p) with a ‘good error’, C,[f] outputs
enc(o) with a ‘good error’, where o can be arbitrary.
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Weight Enumerators

Definition: Weight enumerator

Consider a family of bad sets F € P({1, ...,n}). Let [ < )
F) _
Ay,

= (# of elements of weight w in F) T - :
The weight enumerator polynomial of F is P

W(Tx)—ZA(T) D BN

W(F;x) = 18x2




Upper Bounding Bad Errors Probability

Weight enumerators and bad sets make the interface
that separates the combinatorial FT analysis from the
probabilistic distribution of faults.

Consider E < [n] which has a locally stochastic

distribution. That means for any S € [n], we have
Pr(S € E) < ¢l

Then

Pr(E is not F—avoiding) < Z Sl = w(F;e)
SeF

In other words, the weight enumerator polynomial
upper bounds the probability of ‘bad error’ occurring.
This bounding works for most noise models, such as

adversarial, locally stochastic, and even coherent noise.

Definition: Weight enumerator

Consider a family of bad sets F < P({1, ...,n}). Let
A‘(,VT) = (# of elements of weight w in F)

The weight enumerator polynomial of F is

(0]

W(F;x) = z AP xw

w=0




Composing Gadgets and Polynomials

Consider two gadgets with bad faults F and G. Define
F H G = Sets containing a subset from F or @,
F ® G = Sets containing a subset from ¥ and G.

It’s easy to show that
WEHRG x) = W(EF;x) +W(G;x),
WEF®G x) = W(EF;x) x W(G;x).

For anerror E C [n],
E is not F—avoiding )
< . .
r(E is not G—avoiding or | < W(F;e) + W(G;x),
- (E is not F—avoiding

E is not G—avoiding and) <sW(F;e) x W(G;x),

Definition: Weight enumerator

Consider a family of bad sets F < P({1, ...,n}). Let
A‘(,VT) = (# of elements of weight w in F)

The weight enumerator polynomial of F is

[00]

W(FD) = ) AP

w=0




Composing Gadgets and Polynomials

Consider two gadgets with bad faults F and g.
E is not F—avoiding
r(E is not G—avoiding or) = W(F;e) + WG x),
E is not F—avoiding
r (E is not G—avoiding and) S W(F;e) x W(G;x).
So long as the gadgets are independent in the
combinatorial sense (not overlapping), the above
equations hold.
» The noise distribution can be arbitrary! Correlated,
different for each gadget, train running near
optical devices...

This is the key property of our definitions: composable
gadgets with no assumptions except for disjointness.

Definition: Weight enumerator
Consider a family of bad sets F < P({1, ...,n}). Let

A‘(,VT) = (# of elements of weight w in F)
The weight enumerator polynomial of F is

W(FD) = ) AP
w=0




Concatenate Gadgets and Polynomials

We also have an operation defined for concatenated gadgets

Feo {Si}i = EE'fEJ: (]Inef[Sn] € ]In—lef[sn—l] ®

The weight enumerator is bounded as
W(F - (S} 0) = W(F; WS} )

More details can be found in the paper.

- ®ief[S1]) -
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Gadget Example: Error Correction

Let’s consider gadgets on surface codes.
» SC% denote surface code of distance d
> UZ < [d?], for a fraction c € [0,1], is defined as all
sets of qubits which contain more than a c fraction
of a connected component of size > d.
» If above definition is unclear, just know that
bigger ¢ = more errors.

The standard error correction gadget, where we
measure stabilizers for d rounds and correct for errors,
can be written down as usual.

Phase-flip error Bit-flip error

mn ita qubit nMeasure qubit ‘Data qubit with error

Surface code with error on data qubit, Fig. by Google



Gadget Example: Error Correction

Let’s consider gadgets on surface codes.
> SC% denote surface code of distance d
> UZ c [d?], for a fraction ¢ € [0,1], is defined as all
sets of qubits which contain more than a c fraction
of a connected component of size > d.
» If above definition is unclear, just know that
bigger ¢ = more errors.

The standard error correction gadget, where we
measure stabilizers for d rounds and correct for errors,
can be written down as usual.

Input error is suppressed by the EC gadget.
Gadget has bad faults Fgc, which has
weight enumerator bounded by

W (Fgc; x) < poly(d) - e~ 4

when x is below a constant threshold.



Gadget Example: CNOT

Transversal CNOT

an . 4 a

d d d

Uij U | Uln
,'

P T\ yi

d a1

Ui Ulw Ulp

Gadget for CNOT, built from smaller gadgets

Let’s build the bad faults of this gadget by composition.
»  Fgc(1), (2) is bad faults for EC gadget (1), (2);
» Let Fcnor be bad faults for transversal CNOT;

The bad faults for this whole gadget is simply
F = Fgc(1) H Fec(2) H Fenor

And its weight enumerator is
W(T, .X') =2 X W(TEC; .X') + W(TCNOT; .X').

Since each of the component polynomials have constant
threshold, the whole gadget has constant threshold.



Gadget Example: State Injection

State injection: prepare a noisy logical state in the code. For surface code, we can start with the physical
qubit, and iterate the following procedure: grow the lattice length by 2, and perform error correction.

INJECT

: ency (ly)wl)

The weight enumerator can be calculated from those of the smaller components, and we have
W (Finjeer; ) < 0(x).



Gadget Example: Magic State Distillation

Given state injection, we can inject magic states and perform magic state distillation (MSD).
» This procedure can be applied iteratively for multiple rounds;
» Weight enumerators can be calculated using FH and ®, more details in paper.

One round MSD Two-round MSD



Threshold Theorems: Surface Code FTQC

Theorem 7.11 (Threshold theorem for surface code quantum computation). There exists a
constant €, € (0,1) such that, for any Clifford+T circuit C of width W and depth D and any
e € (0,1), there exists a circuit C that is a fault-tolerant gadget for C' with bad fault paths F.

Let V = @. Then, C has width W and depth D satisfying the bounds

W = O(W log® ! (V)polyloglog(V)) (7.42)
D = O(Dlog?(V)polyloglog(V)) . (7.43)

On z € [0, €], the weight enumerator of F satisfies the bound

W(F; z) <e. (7.44)

» Constructed using transversal Cliffords and MSD. First written proof of surface code FTQC threshold (?)
» Constant threshold against locally stochastic noise, inverse-log threshold against coherent noise (new!).
» Building the formalism took us 60 pages; this Theorem took 10; handling coherent noise took 3;



Threshold Theorems: Constant Space Overhead FTQC

Theorem 7.21 (Constant space overhead threshold theorem). There exists a constant €, € (0, 1)
such that, for any Clifford+T circuit C' with classical input and classical output of width W,
depth D, and € € (0,1) there exists a circuit C that is a fault-

tolerant gadget for C' with trivial input and output and bad fault paths F. Let V = ﬂel—). Then,
C has width W and depth D satisfying the bounds

W = O(W) (7.83)
D = O(Dlog®** (V)polyloglog(V)) . (7.84)

On z € [0, ¢,], the weight enumerator of F satisfies the bound

W(F; z) <e. (7.85)

» Reproduced construction from [Gottesman 2014] and [Tamiya-Koashi-Yamasaki 2024]
» This constructions utilizes previous surface code theorem; took us 5 pages to prove. Average FT
threshold paper takes 40~100 pages!




Threshold Theorems: Almost-Log Overhead FTQC

Theorem 3.23 (Main result). There exists a function f(zx)
and a value €, € (0,1) such that for any e, € (0,1) and (Clifford+CCZ) classical input / classical
output quantum circuit C with width W and depth D

There is a corresponding efficiently constructable classical input / classical output quantum circuit C
with width W and depth D satisfying

= Ow—o0o(1) (35)

WD 14+0(1)
= Oigpsoo <(log . ) (36)

and using auziliary O(1)-time classical computation per quantum time step, such that the following
guarantees hold. For a random physical fault £ distributed according to e-locally stochastic faults
model with € € [0,¢€.|, the output distribution of C subject to f is er-close in TVD to the output
distribution of C'.

ISR

» Result from [Nguyen-Pattison 2024], convoluted assembly of many components. This is one of the
most asymptotically optimal FTQC scheme as of now.
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Future Directions

*» So what is fault tolerance?

Fault tolerance is a combinatorial bound on the fault propagation behavior
of a circuit.

Through avoiding sets and weight enumerators, the Composable FT

formalism separates the combinatorial analysis of fault propagation from

the probabilistic analysis of noise distribution.

We hope our definitions could be groundwork that inspires future proofs of
fault-tolerance. Lots of future works that can be done:

>

>
>
>

Threshold proofs for LDPC code surgery operations;
Constant threshold against coherent noise;
Two-dimensional FTQC via concatenating QLDPC codes;
And many more, talk to us if you're interested in proving FT!
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