
Composable Quantum Fault-Tolerance

Zhiyang He (Sunny)1, Quynh Nguyen2, Christopher Pattison34

1 MIT, 2 Harvard, 3 Caltech and 4 UC Berkeley



Prelude: A Summer Day in Benasque

Fault-Tolerant Quantum Technologies (FTQT) Workshop in Benasque, Spain, 2024



Fault-Tolerant Quantum Technologies Workshop

Chris Pattison

Kenneth Brown

In breakout sessions, we are

assigned into small groups and

asked to write down questions

we’d like to understand better

through this workshop.

Ken asked the first question in

our group:

What is Fault Tolerance?



The Promise of Fault-Tolerance

We want to run large quantum algorithms, but how large?

➢ Circuit volume = Width (space) ⨉ Depth (time), V = WD.

➢ Fault-tolerant execution→ gate error rate at Θ(1/𝑉).

➢ Factoring 2048-bit: around 1015 qubit-steps.

Quantum error correction

will bridge this gap!

10-1 10-2
Error rate of encoded gates10-3 10-12

Physical error

rates today

What large-scale quantum

algorithms require

𝑛 = 𝑝 ⋅ 𝑞



Encoded Computation

Circuit C

Qubits W

Depth D
Encoded
circuit CL

Qubits W’

Depth D’
Encode qubits and

gates with QEC

Encode raw qubits/gates/error rates into error-corrected qubits/gates/error rates.

➢ Space overhead: W’/W, Time overhead: D’/D.

➢ Often measured in terms of physical circuit volume V, specifically log(V).



What is Quantum Fault-Tolerance?

Gold Standard: Existence of a constant noise threshold 𝜖, such that if the physical

noise strength is below 𝜖, we can realize arbitrarily large computation fault-

tolerantly (with certain overheads).

Formally, this means that there is a family of encoding schemes (we will call them

FT schemes) that achieve arbitrarily low encoded error rate at growing costs.

Great! So what’s unclear about this? Looks like a reasonable theorem?

Threshold Theorem from Nielsen & Chuang



What is Quantum Fault-Tolerance?

So what’s unclear about this? Looks like a reasonable theorem?

➢ What’s the noise model? Locally stochastic? Independent Pauli error?

Adversarial? Coherent Noise?

➢ What are the computation assumptions? Free & noiseless classical

compute, or more thorough analysis?

➢ Most significant issue: Really hard to prove rigorously! Most papers

propose new techniques, but do not prove threshold theorem. Instead,

they justify FT in other ways.



FT or not FT, That is The Question

E.g.: Logical computation gadgets on LDPC codes. Lots of recent papers

proposing many interesting ways of performing encoded computation on

high-rate quantum LDPC codes.

They all justify fault-tolerance, but with different definitions, assumptions,

and noise models. As a result, they cannot be easily combined in a

rigorous fashion. This is a lack of composability.

What other notions of FT have we been using?



Quantum Fault-Tolerance Alignment Chart 

Lawful
(Rigorously proved)

Neutral
Chaotic

(Less based on proofs)

Good
(Standard, easy to
convince others)

Threshold under
stochastic noise

Circuit has large
spacetime distance

Experimental data

Neutral
Input/Output behavior
of circuit under noise

Code has large distance Numerical simulations

Evil
(Uncommon, hard to

derive and/or convince)

Threshold under
coherent noise

Fault-Tolerance in
Amortization

“This looks FT ☺”



Goal: Rigorous, Composable Quantum Fault-Tolerance

Our work: a mathematical framework for proving

threshold theorems that

➢ Enables composition of complex, drastically

distinct gadgets

➢ Re-establishes several well-known threshold

results in the same language

➢ Separates the probabilistic analysis of noise

model from the combinatorial analysis of

error propagation.

By making fault-tolerance composable, future

works can continue to prove new gadgets, and

compose with existing library to derive rigorous

threshold theorems for novel FTQC schemes.

We bring standard results

closer to the lawful side

And unifies many results

in the lawful camp.



Goal: Rigorous, Composable Quantum Fault-Tolerance

Building on the groundwork established by the

formalism, we prove (or reprove):

➢ Constant overhead FTQC via LDPC codes

➢ First written proof (?) of a threshold theorem

using surface code + distillation

➢ A threshold theorem for surface code FTQC

under coherent noise

Many possible future works, which we will

discuss at the end.

We bring standard results

closer to the lawful side

And unifies many results

in the lawful camp.



I. Faults and Bad Sets

II. Fault-Tolerant Gadgets

III. Weight Enumerators and Gadget Composition

IV. Assembly: Building Fault-Tolerant Schemes

V. Discussions and Outlook



Circuits, Environment and Faults

To capture different noise and computation 

models, we consider a general model of circuit

and fault:

➢ Circuit has quantum and classical registers,

inputs, gates, and outputs.

➢ Faults in the circuit interact with an

‘environment circuit’.

➢ Faults are inserted before and after gates.

While the faults are unitary in the global space,

their actions when restricted to the logical

workspace can be non-physical!

Environment circuit

Faults happen between gates



Circuits, Environment and Faults

What is a fault mathematically? We start with an error channel:

And insert errors between gates:

These K are superoperators (interacting with external environment), they are the faults. Our

final circuit looks like:

We can then analyze C[f] as a fixed circuit, where the faults are inserted deterministically.



Capturing Faults by Sets

Given a fixed faulty circuit C[f], how does f affect the

execution? Conceptually, the locations which f corrupt are

critical: some failure locations can be corrected, while

other cannot. We capture this intuition as follows:

Definition: Avoiding Sets

Given a set of locations/qubits [n], a family of bad sets ℱ is

a subset of the powerset of [n].

ℱ ⊆ 𝑃 1,… , 𝑛

For a set 𝐸 ⊆ [𝑛], we say that E is ℱ-avoiding if

∀𝑆 ∈ ℱ, 𝑆 ⊈ 𝐸.



Capturing Faults by Sets

Example: on a [n,k,d] error correcting code, define ℱ to be

all sets from which a minimum weight decoder cannot

recover. Then all errors 𝐸 that is ℱ-avoiding are

recoverable, and can be considered ‘good errors’. We can

picture this on a d=2 rotated surface code.

Definition: Avoiding Sets

Given a set of locations/qubits [n], a family of bad sets ℱ is

a subset of the powerset of [n].

ℱ ⊆ 𝑃 1,… , 𝑛

For a set 𝐸 ⊆ [𝑛], we say that 𝐸 is ℱ-avoiding if

∀𝑆 ∈ ℱ, 𝑆 ⊈ 𝐸.

ℱ

𝐸 is ℱ-avoiding

𝐸



Capturing Faults by Sets

Example: for a circuit CFT that is encoding an ideal circuit C, [n]

would be the spacetime locations where fault could occur. The

bad sets ℱ would be ‘witnesses of failed circuit execution’.

If f is ℱ-avoiding, then the circuit was ‘successful’ and correct:

It’s hard to argue about the correctness of one big circuit. Let’s

capture correctness modularly.

Definition: Avoiding Sets

Given a set of locations/qubits [n], a family of bad sets ℱ is

a subset of the powerset of [n].

ℱ ⊆ 𝑃 1,… , 𝑛

For a set 𝐸 ⊆ [𝑛], we say that 𝐸 is ℱ-avoiding if

∀𝑆 ∈ ℱ, 𝑆 ⊈ 𝐸.
CFT[f]



I. Faults and Bad Sets

II. Fault-Tolerant Gadgets

III. Weight Enumerators and Gadget Composition

IV. Assembly: Threshold Theorems

V. Discussions and Outlook



What’s a Gadget?

Recall that there is a circuit C we wish to implement with low

error rate, and we need to encode C into a bigger circuit, CFT.

Every qubit of C will be encoded in error-correcting codes in

CFT. Similarly, every gate of C will be encoded into a gadget,

which is a sub-circuit of CFT.

➢ Example: a CNOT gate in Cmay be encoded into a

transversal CNOT in CFT.

Transversal CNOT. Fig. credit 2408.01393



What’s a Gadget?

Concretely:

➢ In C, a gate g acts on some set of qubits Q.

➢ In CFT, the corresponding gadget Cg acts on error-

correcting code blocks which encode Q.

When there is no error/fault, Cg correctly performs g on

encoded qubits.

What if there are errors? How can we say Cg is FT?
Transversal CNOT. Fig. credit 2408.01393



Errors on Input and Output Codes

Let’s start by looking at the input/output of a gadget.

They are states in quantum codes, impacted by

errors on qubits.

Definition: Code Type

A code is specified by two pieces of data:

➢ An encoding unitary enc, and

➢ A family of bad error supports ℬ, such that if an

error 𝐸 is ℬ-avoiding, then 𝐸 can be recovered

using the encoding unitary enc.

We say that (enc, ℬ) is a code type.

For a gadget, a ‘good input’ would be one where the

error 𝐸 is ℬ-avoiding. Otherwise it’s a ‘bad input’.
ℱ

𝐸 is ℱ-avoiding

𝐸



Fault-Tolerant Gadgets

Besides input errors, faults can corrupt the physical gates

in the gadgets, introducing more noise into the system.

We say that a gadget is FT if, under bounded noise, it maps

good input to good output.

Transversal CNOT and error propagation.

Fig. credit 2408.01393

Definition: FT Gadget (Part 1)

A gadget for a gate g is specified by a circuit Cg with locations 𝐿

and a family of bad fault paths ℱ ⊆ 𝑃 𝐿 .

Given a ‘good fault’ f that is ℱ-avoiding:

1. On an input state enc(ρ) with a ‘good error’, Cg[f] outputs

the state enc(g(ρ)) with a (different) ‘good error’.



Fault-Tolerant Gadgets

Remarks:

➢ This is a completely combinatorial definition!

Everything is bounded in terms of sets.

➢ Different gadgets with compatible input/output codes

can be easily composed! More on that later.

Definition: FT Gadget (Part 1)

A gadget for a gate g is specified by a circuit Cg with locations 𝐿

and a family of bad fault paths ℱ ⊆ 𝑃 𝐿 .

Given a ‘good fault’ f that is ℱ-avoiding:

1. On an input state enc(ρ) with a ‘good error’, Cg[f] outputs

the state enc(g(ρ)) with a (different) ‘good error’.



Fault-Tolerant Gadgets

What if the input state is bad?

Definition: FT Gadget (Part 2)

Given a ‘good fault’ f that is ℱ-avoiding:

1. On an input state enc(ρ) with a ‘good error’, Cg[f] outputs

the state enc(g(ρ)) with a (different) ‘good error’.

2. On an input state enc(ρ) with a ‘good error’, Cg[f] outputs

enc(σ) with a ‘good error’, where σ can be arbitrary.

We call this second condition ‘friendliness’. This is a reset

mechanism that catches irrecoverable errors. Not all gadgets

need to be friendly – this is an optional property.



Gadgets on Fire

What if the fault f is bad?

➢ The gadget failed, and there is no guarantee. The

output state is automatically treated as ‘bad’.

However, that doesn’t always mean failure for the global

computation – a local gadget failure may be corrected by

other successful gadgets, especially when we do recursive

simulation!



Recursive Simulation

Concatenated encoding scheme,

Nielsen & Chuang

Concatenation: Given circuit C, we first encode into

𝐶𝐹𝑇
1 , then further encode 𝐶𝐹𝑇

1 into 𝐶𝐹𝑇
2 , so on and so

forth.

➢ Time-tested idea in classical and quantum error

correction.

➢ Failure of gadgets in 𝐶𝐹𝑇
2 correspond to failure of

gates in 𝐶𝐹𝑇
1 , which is correctable in 𝐶𝐹𝑇

1 .

This recursive simulation method, sometimes called

level reduction, can be derived using our definitions

(see Theorem 4.11).



Fault Tolerance as a Combinatorial Property

Challenge: ℱ can be very complicated for a big

circuit, this definition is useless if we can’t

properly describe ℱ!

➢ How can we build these bad fault paths and

bound their probabilities?

➢ What happen to these bad fault paths when

we compose gadgets, or do recursive

simulation?

Definition: FT Gadget

A gadget for a gate g is specified by a circuit Cg with locations 𝐿

and a family of bad fault paths ℱ ⊆ 𝑃 𝐿 .

Given a ‘good fault’ f that is ℱ-avoiding:

1. On an input state enc(ρ) with a ‘good error’, Cg[f] outputs

the state enc(g(ρ)) with a (different) ‘good error’.

2. On an input state enc(ρ) with a ‘good error’, Cg[f] outputs

enc(σ) with a ‘good error’, where σ can be arbitrary.



I. Faults and Bad Sets

II. Fault-Tolerant Gadgets

III. Weight Enumerators and Gadget Composition

IV. Assembly: Threshold Theorems

V. Discussions and Outlook



Weight Enumerators

Definition: Weight enumerator

Consider a family of bad setsℱ ⊆ 𝑃 1,… , 𝑛 . Let

𝐴𝑤
ℱ = # of elements of weight 𝑤 in ℱ

The weight enumerator polynomial of ℱ is

𝑊 ℱ; 𝑥 = ෍

𝑤=0

∞

𝐴𝑤
ℱ 𝑥𝑤

ℱ

𝑊 ℱ; 𝑥 = 18𝑥2



Upper Bounding Bad Errors Probability

Definition: Weight enumerator

Consider a family of bad setsℱ ⊆ 𝑃 1,… , 𝑛 . Let

𝐴𝑤
ℱ = # of elements of weight 𝑤 in ℱ

The weight enumerator polynomial of ℱ is

𝑊 ℱ; 𝑥 = ෍

𝑤=0

∞

𝐴𝑤
ℱ 𝑥𝑤

Weight enumerators and bad sets make the interface

that separates the combinatorial FT analysis from the

probabilistic distribution of faults.

Consider 𝐸 ⊆ [𝑛] which has a locally stochastic

distribution. That means for any 𝑆 ∈ 𝑛 , we have

Pr 𝑆 ⊆ 𝐸 ≤ 𝜖 𝑆

Then

Pr 𝐸 is not ℱ−avoiding ≤ ෍

𝑆∈ℱ

𝜖 𝑆 = 𝑊 ℱ; 𝜖

In other words, the weight enumerator polynomial

upper bounds the probability of ‘bad error’ occurring.

This bounding works for most noise models, such as

adversarial, locally stochastic, and even coherent noise.



Composing Gadgets and Polynomials

Definition: Weight enumerator

Consider a family of bad setsℱ ⊆ 𝑃 1,… , 𝑛 . Let

𝐴𝑤
ℱ = # of elements of weight 𝑤 in ℱ

The weight enumerator polynomial of ℱ is

𝑊 ℱ; 𝑥 = ෍

𝑤=0

∞

𝐴𝑤
ℱ 𝑥𝑤

Consider two gadgets with bad faults ℱ and 𝒢. Define

ℱ ⊞ 𝒢 ≔ Sets containing a subset from ℱ or 𝒢,

ℱ ⊛ 𝒢 ≔ Sets containing a subset from ℱ and 𝒢.

It’s easy to show that

𝑊(ℱ ⊞ 𝒢; 𝑥) = 𝑊 ℱ; 𝑥 + 𝑊 𝒢; 𝑥 ,

𝑊(ℱ ⊛ 𝒢; 𝑥) = 𝑊 ℱ; 𝑥 × 𝑊 𝒢; 𝑥 .

For an error 𝐸 ⊆ [𝑛],

Pr
𝐸 is not ℱ−avoiding

𝐸 is not 𝒢−avoiding
𝒐𝒓 ≤ 𝑊 ℱ; 𝜖 + 𝑊 𝒢; 𝑥 ,

Pr
𝐸 is not ℱ−avoiding

𝐸 is not 𝒢−avoiding
𝒂𝒏𝒅 ≤ 𝑊 ℱ; 𝜖 × 𝑊 𝒢; 𝑥 ,



Composing Gadgets and Polynomials

Definition: Weight enumerator

Consider a family of bad setsℱ ⊆ 𝑃 1,… , 𝑛 . Let

𝐴𝑤
ℱ = # of elements of weight 𝑤 in ℱ

The weight enumerator polynomial of ℱ is

𝑊 ℱ; 𝑥 = ෍

𝑤=0

∞

𝐴𝑤
ℱ 𝑥𝑤

Consider two gadgets with bad faults ℱ and 𝒢.

Pr
𝐸 is not ℱ−avoiding

𝐸 is not 𝒢−avoiding
𝒐𝒓 ≤ 𝑊 ℱ; 𝜖 + 𝑊 𝒢; 𝑥 ,

Pr
𝐸 is not ℱ−avoiding

𝐸 is not 𝒢−avoiding
𝒂𝒏𝒅 ≤ 𝑊 ℱ; 𝜖 × 𝑊 𝒢; 𝑥 .

So long as the gadgets are independent in the

combinatorial sense (not overlapping), the above

equations hold.

➢ The noise distribution can be arbitrary! Correlated,

different for each gadget, train running near

optical devices…

This is the key property of our definitions: composable

gadgets with no assumptions except for disjointness.



Concatenate Gadgets and Polynomials

We also have an operation defined for concatenated gadgets

The weight enumerator is bounded as

𝑊 ℱ ∙ {𝑆𝑖}𝑖; 𝑥 = 𝑊 ℱ; 𝑊 {𝑆𝑖}𝑖; 𝑥

More details can be found in the paper.



I. Faults and Bad Sets

II. Fault-Tolerant Gadgets

III. Weight Enumerators and Gadget Composition

IV. Assembly: Threshold Theorems

V. Discussions and Outlook



Gadget Example: Error Correction

Surface code with error on data qubit, Fig. by Google

Let’s consider gadgets on surface codes.

➢ SC𝑑 denote surface code of distance 𝑑

➢ 𝑈𝑐
𝑑 ⊆ [𝑑2], for a fraction 𝑐 ∈ 0,1 , is defined as all

sets of qubits which contain more than a 𝑐 fraction

of a connected component of size ≥ 𝑑.

➢ If above definition is unclear, just know that

bigger 𝑐 ⇒ more errors.

The standard error correction gadget, where we

measure stabilizers for 𝑑 rounds and correct for errors,

can be written down as usual.



Gadget Example: Error Correction

Let’s consider gadgets on surface codes.

➢ SC𝑑 denote surface code of distance 𝑑

➢ 𝑈𝑐
𝑑 ⊆ [𝑑2], for a fraction 𝑐 ∈ 0,1 , is defined as all

sets of qubits which contain more than a 𝑐 fraction

of a connected component of size ≥ 𝑑.

➢ If above definition is unclear, just know that

bigger 𝑐 ⇒ more errors.

The standard error correction gadget, where we

measure stabilizers for 𝑑 rounds and correct for errors,

can be written down as usual.

➢ Input error is suppressed by the EC gadget.

➢ Gadget has bad faults ℱEC, which has

weight enumerator bounded by

𝑊(ℱEC; 𝑥) ≤ 𝘱𝘰𝘭𝘺 𝑑 ⋅ 𝑒−𝑑

when x is below a constant threshold.



Gadget Example: CNOT

Let’s build the bad faults of this gadget by composition.

➢ ℱEC(1), (2) is bad faults for EC gadget (1), (2);

➢ Let ℱCNOT be bad faults for transversal CNOT;

The bad faults for this whole gadget is simply

ℱ ≔ ℱEC(1) ⊞ ℱEC(2) ⊞ ℱCNOT

And its weight enumerator is

𝑊 ℱ; 𝑥 = 2 × 𝑊(ℱEC; 𝑥) + 𝑊 ℱCNOT; 𝑥 .

Since each of the component polynomials have constant

threshold, the whole gadget has constant threshold.

Gadget for CNOT, built from smaller gadgets

Transversal CNOT



Gadget Example: State Injection

State injection: prepare a noisy logical state in the code. For surface code, we can start with the physical

qubit, and iterate the following procedure: grow the lattice length by 2, and perform error correction.

The weight enumerator can be calculated from those of the smaller components, and we have

𝑊 ℱINJECT; 𝑥 ≤ O(x).



Gadget Example: Magic State Distillation

Given state injection, we can inject magic states and perform magic state distillation (MSD).

➢ This procedure can be applied iteratively for multiple rounds;

➢ Weight enumerators can be calculated using ⊞ and ⊛, more details in paper.

One round MSD Two-round MSD



Threshold Theorems: Surface Code FTQC

➢ Constructed using transversal Cliffords and MSD. First written proof of surface code FTQC threshold (?)

➢ Constant threshold against locally stochastic noise, inverse-log threshold against coherent noise (new!).

➢ Building the formalism took us 60 pages; this Theorem took 10; handling coherent noise took 3;



Threshold Theorems: Constant Space Overhead FTQC

➢ Reproduced construction from [Gottesman 2014] and [Tamiya-Koashi-Yamasaki 2024]

➢ This constructions utilizes previous surface code theorem; took us 5 pages to prove. Average FT

threshold paper takes 40~100 pages!



Threshold Theorems: Almost-Log Overhead FTQC

➢ Result from [Nguyen-Pattison 2024], convoluted assembly of many components. This is one of the

most asymptotically optimal FTQC scheme as of now.



I. Faults and Bad Sets

II. Fault-Tolerant Gadgets

III. Weight Enumerators and Gadget Composition

IV. Assembly: Threshold Theorems

V. Discussions and Outlook



Future Directions

❖ So what is fault tolerance?

Fault tolerance is a combinatorial bound on the fault propagation behavior

of a circuit.

Through avoiding sets and weight enumerators, the Composable FT

formalism separates the combinatorial analysis of fault propagation from

the probabilistic analysis of noise distribution.

We hope our definitions could be groundwork that inspires future proofs of

fault-tolerance. Lots of future works that can be done:

➢ Threshold proofs for LDPC code surgery operations;

➢ Constant threshold against coherent noise;

➢ Two-dimensional FTQC via concatenating QLDPC codes;

➢ And many more, talk to us if you’re interested in proving FT!



Composable Quantum Fault-Tolerance

Zhiyang He (Sunny)1, Quynh Nguyen2, Christopher Pattison34

1 MIT, 2 Harvard, 3 Caltech and 4 UC Berkeley


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

