
Extractors: QLDPC Architectures for Efficient Pauli-Based Computation

Zhiyang He (Sunny), Alexander Cowtan, Dominic Williamson, Theodore Yoder

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

The Promise of QLDPC Codes

Surface code is the leading candidate for building a
large-scale, fault tolerant quantum computer.

Amazing properties: high threshold, 2D connectivity,
fast decoding, transversal gates, lattice surgery...
Challenge: Significant asymptotic space overhead,
~1000x for factoring.

Quantum LDPC codes promise to implement fault-
tolerant computation with O(1) space overhead.
Ø At what scale can we fulfill this promise to gain a

practical advantage?

* Surface code figure cred. Niel de Beaudrap.

Fast Progress in QLDPC Memory

Quantum Low-Density Parity-Check (LDPC) Codes:
stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!

Recent constructions, [n, k, d]:
- Bivariate Bicycle code [144, 12, 12] *

- Hypergraph product code [2500, 100, 12] **

- Lifted/balanced product code [544, 80, ≤ 12] **

Surface code: [265, 1, 12].

Memory: Decoding algorithm, threshold and logical
error rate, hardware.
From memory to computer: logical computation.
Ø Long-standing challenge and many works.

* [Bravyi et al. 2308.07915]. ** [Xu et al. 2308.08648].

Extractor Architecture for QLDPC Computation

In this work, we present a solution to the QLDPC computation
challenge: Extractors. Our solution has a few distinctive features:

1. Any quantum code can be augmented by an extractor system
to become a computational block. I.e., extractors augment
memories into processors.

2. Given anymagic state factory, can implement universal
quantum circuits via parallelized logical operations.

3. Can be implemented with fixed, constant degree connectivity
(having movable qubits is certainly helpful but not necessary).

4. Highly optimizable, practical space and time overheads.

An Extractor-augmented
computational (EAC) block.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

Universal Computation via Logical Measurements

A Clifford + T circuit can be written in terms of
Pauli rotations, where:
§ Pauli gates → Pauli π/2 rotations,
§ Clifford gates → Pauli π/4 rotations,
§ T gates → Pauli π/8 rotations.
Pauli rotations can be implemented with Pauli
measurements.

Pauli-based computation: Pauli measurements
+ magic states = universal computation.
Ø Fault-tolerant measurements + magic state

factory = universal FT computation!

Surface Code Lattice Surgery

* Figure from [Erhard et al 2020].

Product of red X-checks = XL⛒ XL – obtain logical measurement result by measuring new stabilizers.

Logical measurements on surface codes: lattice surgery, [Horsman et al, 1111.4022].

QLDPC Code Surgery
First proposed by [Cohen et al., 2110.10794], > 10 papers on surgery in the past year.
Ø Section 3.2 of the present work [2503.10390] is a 2-page review.

High level description: for a quantum LDPC code 𝒬, for every logical operator ℒ, can
construct ancilla system 𝒜ℒ such that 𝒬 augmented by 𝒜ℒ can be used to measure ℒ.

(a) Start: Code 𝒬
and operator ℒ.

(b) Init: Initialize
ancilla in product state.

(c) Merge: Code deformation
by measuring new stabilizers

(d) Split: Measure out
ancilla and return to 𝒬.

Challenge: Compact Memory Has Many Operators

Challenge: High-rate codes have many operators, and they overlap.
Prior works: for every logical operator ℒ, construct an ancilla
system for measurement.
Ø Building many ancilla systems will quickly blow up space and

connectivity overhead.

Extractors: one ancilla system 𝒳, can measure any logical operator.
Ø For any code of n qubits, can built LDPC extractor of size '𝑂(𝑛).
Ø In practice, expect space overhead to be a small constant. E.g.,

103-qubit (partial) extractor for [144, 12, 12] code. [2407.18393]
Ø Any operator can be measured with 𝑂 𝑑 syndrome rounds.
Def [Extractors]: extract logical Pauli observables from the memory.
Ø Built using tools developed in [2407.18393], [WY 2410.02213]*,

and [SJOY 2410.03628].

* See also [Ide et al. 2410.02753].

An Extractor-augmented
computational (EAC) block.

Modularity: Bridges and Adapters

Bridge/Adapter: primitive developed in
[2407.18393] and [2410.03628].
Ø LDPC ancilla system that can connect two

extractors into a bigger extractor. Enables
Pauli measurements across connected blocks.

Two names for the same system:
Ø If it connects blocks of the same code, we call

it a bridge.
Ø If it connects blocks of different codes, we call

it an adapter.

Two EAC blocks joined by a bridge ℬ.

An EAC blocks connected to a source of
magic states by an adapter 𝒜.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

Extractor Architecture: MWE
Let’s start with a minimal working example (MWE) of extractor architectures.

A [n, k, d] code 𝒬, augmented by an
extractor 𝒳. This is an EAC block.

The extractor 𝒳 is connected to the
factory by an adapter.

An arbitrary 𝑇 state factory.

Features & Comments

Ø Every logical measurement takes O(d)
syndrome cycles.

Ø Can be built with any code 𝒬 and any
𝑇 state factory.

Ø For near-term, can use small QLDPC
code + magic state cultivation.

Ø Entire system has fixed, constant-
degree connectivity.

Extractor Architecture

EAC blocks connected by bridges

Storage for |𝑇⟩ states, connected to EAC
blocks by adapters.

Centralized magic state factory

Extractor Architecture

Ø Any logical Pauli supported on blocks
and caches connected by bridges and
adapters can be measured in O(d)
syndrome rounds, with fault distance d.

Ø Operators supported on disjoint blocks
can be measured in parallel by
deactivating bridges/adapters.

Ø Flexibility: global architecture can be
tailored to hardware or application.

Compilation for an Extractor Architecture

Compilation similar to Game of Surface Code [Litinski 1808.02892]. Given a
logical circuit of Pauli rotations, we consider three types of gates:
1. Pauli π/8 rotations,
2. Pauli π/4 rotations supported within one EAC block (in-block Cliffords),
3. Pauli π/4 rotations supported on two EAC blocks connected by bridges

(cross-block Cliffords).
We conjugate all in-block Cliffords (type 2) to the end of the circuit.

They will be absorbed by a round of final read-out. Type 1 and 3 rotations
will then be implemented with logical measurements.

Circuit Example

Green operations are what we compile and implement. White operations are in-block Clifford that are compiled away.

1. Conjugate all in-block Cliffords to the end of the circuit.

Circuit Example

Green operations are what we compile and implement. White operations are in-block Clifford that are compiled away.

1. Conjugate all in-block Cliffords to the end of the circuit. 2. Absorb in-block Cliffords by the final measure-out.

Circuit Example

Green operations are what we compile and implement. White operations are in-block Clifford that are compiled away.

1. Conjugate all in-block Cliffords to the end of the circuit. 2. Absorb in-block Cliffords by the final measure-out.

Remarks

Ø In-block Clifford gates are
essentially free.

Ø This compilation heavily relies on
the fact extractors can measure
any logical Pauli.

Ø Bottleneck: magic state supply
speed and number of cross-block
gates.

Ø Highly optimizable for specific
applications.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

Scalable Tanner Graphs

Code

Physical qubits of the code 𝒬

Stabilizers of the code 𝒬

Symplectic check matrix

Building an Extractor from a Graph

Let X = (V, E) be a graph.

1. For every edge in E, create an
ancilla qubit.

2. For every vertex in V, create an
ancilla check, which act on
adjacent edge qubits by Pauli Z.

3. Pick a cycle basis R of X. For
every cycle C in R, create an
ancilla check, which act on edges
in C by Pauli X.

This ancilla system, the extractor
system, commutes.

Code Extractor

Building an Extractor from a Graph

We will build fixed connections between:
1. Vertex checks V and qubits of 𝒬;
2. Stabilizers S and ancilla edge qubits E.
What’s their Pauli action?
Depends on the operator we want to measure!

Given operator ℒ, we will pick symplectic matrices
𝑀ℒ and 𝑀" so that
1. Entire system in EAC block commutes. I.e, we

have a well-defined measurement code 𝒬ℒ .
2. Product of vertex checks V equals to ℒ.
Measuring stabilizers of 𝒬ℒ for O(d) rounds gives
logical measurement of ℒ fault-tolerantly.

Code Extractor

Many Important Details…

Many details not discussed in this talk:

1. Why is this system LDPC?

2. How to connect S with E and Q with V?

3. How to choose matrices 𝑀ℒ and 𝑀"?

4. How to prove fault-tolerance of this code-

switching process?

5. How to upper bound size of extractors by '𝑂(𝑛)?

6. Most importantly, how to build this in practice?

All proved & discussed in the paper with graph theory.

Code Extractor

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

The Landscape of QLDPC Computation

Symmetry
• Transversal gates;
• Automorphisms gates;
• ZX Duality.

Teleportation-based
• Gate teleportation: magic

states and Clifford states
• Homomorphic measurements

Code deformation
• Code surgery and extractors
• Punctures?
• Code-switching?

Universal Computation = Symmetry + magic state factory + transversal CNOT + (multiple) Clifford state factories.

Universal Computation = Magic state factory + extractors.

Universal Computation = Symmetry + magic state factory + transversal CNOT/partial extractors.

Ø Standard solution: multiple factories for different gates incurs heavy overhead.

Ø Extractor architecture: in-block Cliffords are free, fixed & LDPC connectivity. Larger decoding instance.

Ø [Malcolm et al. 2502.07150]: Low rate: 𝑘 ∼ (log 𝑛)#, symmetry are no longer O(1) depth

Universal Computation = QLDPC memory + surgery + surface code computation (magic state factory).

Ø Hybrid architecture: surface code computation will quickly erase space advantage.

Where does automorphism gates fit?

For a code with automorphism gates 𝒰, we
don’t need to build a full extractor.

Instead, we can build a partial extractor
which can measure Pauli operators in the
set 𝒪, such that 𝒰†𝒪𝒰 generate the full k
qubit Pauli group.
Ø All 𝜋/4 rotations on k-1 qubits!

This is similar to the 103-qubit system on
the [144, 12, 12] gross code. [2407.18393]

Same applies if the code has other low-
overhead logical operations.

Gross code

Partial extractor

Bridge used in
partial extractor

* Figure by Patrick Rall.

What if the hardware supports qubits movement?

Everything can move: factories, bridges,
adapters, extractors.
Ø Space overhead can be bounded by

‘active’ components.

Within one EAC block, a moving partial
extractor can act as a full extractor.

Movement makes transversal CNOT easy.
Ø Extractor can prepare arbitrary logical

stabilizer state ‘offline’, effectively as a ‘Clifford
factory’.

Ø Gate teleportation lets us perform arbitrary
Clifford operation in O(1) ‘online’ step.

Ø Universal = addressable non-Clifford* +
extractor Clifford factory + transversal CNOT.

* See also discussions & constructions in [2502.01864]

Future Directions

⚛ Design of (partial) extractors on promising codes
Ø Reducing cost of extractors with automorphisms or code structure;
Ø Constant asymptotic/practical space overhead?
Ø Hardware layout and/or optimizations;

⚛ Global architectures design for specific hardware & applications
Ø Choice of code & block size, bridge connections, and magic state supply given
specific circuit;

Ø Combination of extractor architecture with specialized algorithmic gadgets.

⚛ Resource Estimation
Ø Compilation of algorithms, such as factoring, to an extractor architecture.
Ø Hardware constraints, architecture design, EAC blocks, decoders…

Ending Remarks

☀ Extractors bridge the gap from memories to
general purpose, large-scale computers.

☀ An open and exciting frontier for theoretical
and practical explorations.

🚜 Challenges ahead: LDPC hardware, fast and
accurate decoding, many more…

Extractors: QLDPC Architectures for Efficient Pauli-Based Computation

Zhiyang He (Sunny), Alexander Cowtan, Dominic Williamson, Theodore Yoder

Slides:

