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Abstract

In this thesis, we study two problems that stem from the research of Tuŕan num-
ber of even cycles, and one problem on the kernelization of minimum vertex cuts. In
Chapter 2, we study the maximum number of hyperedges which may be in an r-uniform
hypergraph under the restriction that no pair of vertices has more than t Berge paths
of length k between them. When r = t = 2, this is the even-cycle problem asking for
ex(n,C2k). We extend results of Füredi and Simonovits and of Conlon, who studied the
problem when r = 2.

In Chapter 3, we prove ex(n,C2k) ≤ (16
√
5
√
k log k + o(1)) · n1+1/k. We improve

on Bukh and Jiang’s method used in their 2017 publication, thereby reducing the best
known upper bound by a factor of

√
5 log k.

In Chapter 4, we present a linear algorithm to construct minimum vertex cut spar-
sifiers of size Θ(k2) in directed acyclic graphs with k terminals. Previously, Kratsch and
Wahlström constructed a vertex cut sparsifier with O(k3) vertices via the theory of repre-
sentative families on matroids. We draw inspiration from the renowned Bollobás’s Two-
Families Theorem in extremal combinatorics and introduce the use of skew-symmetry
into Kratsch and Wahlström’s methods, which leads to the stated improvement.
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Chapter 1

Introduction

1.1 The Even-Cycle Problem

The study of extremal combinatorics has a heavy focus on unavoidable structures. A
common theme that lies at the heart of many important problems in the field is the
following question: when the size of the system grows to infinity, what are the structures
that must, or must not, appear? A natural follow-up to this question is, can we derive
upper and lower bounds on the size of our systems (for these structural characteristics
to emerge)? These types of inquiries are best embodied by one of the most well-studied
groups of problems in extremal graph theory – the Tuŕan type problems, which study
the following notion in various settings.

Definition 1.1.1 (Tuŕan Number). Given a graph F , we denote by ex(n, F ) the maximum
number of edges that a graph on n vertices can have while not containing F as a subgraph.
Similarly, for a family of graphs F , ex(n,F) requires that no element of F is present.

The first result, known as Mantel’s Theorem, was proven by Mantel [41] in 1907.
Since then, extensive amount of works have been established, among which is the cele-
brated Erdős–Stone–Simonovits Theorem [19]: ex(n, F ) = (1− 1

χ(F )−1
+o(1))

(
n
2

)
, where

χ(F ) is the chromatic number of F . This result, proven in 1946, essentially solved
Turán’s Problem for all graphs F with χ(F ) > 2. However, for bipartite F it only gives
ex(n, F ) = o(n2), and determining the order of magnitude for the Turán number of a
bipartite graph in general is a difficult problem (see [23] for a survey).

When F = C2k, the study of ex(n,C2k) is known as the even-cycle problem. This
problem was first studied in 1938 by Erdős [16] and has since become a central problem
in extremal graph theory. A general upper bound of ex(n,C2k) = Ok(n

1+1/k) was first
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published by Bondy and Simonovits [4]. Since then, improvements have been made to
the multiplicative constant [8,47,49], and constructions have been found showing that
the order of magnitude is correct for k ∈ {2, 3, 5} [1, 5, 17, 50]. However, besides C4,
C6, and C10, the precise order of magnitude is unknown.

In the next two chapters, we present new results on the even-cycle problem. In
Chapter 2, we study the problem in hypergraphs and extend well-known results in sim-
ple graphs to r-uniform hypergraphs [31]. The upper bound we derive employs a reduc-
tion lemma and generalizes the results of Bondy and Simonovits [4]. The lower bound
construction utilizes a random polynomial method developed by Blagojević, Bukh and
Karasev [2] as well as results from algebraic geometry. In Chapter 3, we return to sim-
ple graphs and present an improvement on the multiplicative constant in the bound
ex(n,C2k) = Ok(n

1+1/k) [29]. Our proof is an improved and simplified version of Bukh
and Jiang’s methods [8], with a different delivery.

1.2 An Extremal Result in Matroid Theory

In Chapter 4, we deviate from our previous discussion on Tuŕan problems and explore
another topic of similar flavour – linear dependency structures in extremal set systems.
To start with, we present the famous Bollobás’s Two Families Theorem.

Theorem 1.2.1. Let A = {A1, · · · , Am} and B = {B1, · · · , Bm} be families of sets such
that for all i ∈ [m], |Ai| ≤ r and |Bi| ≤ s. Suppose for all i, we have Ai ∩ Bi = ∅ and for
all j ̸= i, Ai ∩Bj ̸= ∅. Then m ≤

(
r+s
s

)
.

This theorem was first proved by Bollobás [3] in 1965, and was later generalized
into matroid settings by Lovász (see Theorem 4.7 in [38]). An algorithmic version of
this theorem in matroid settings, which we refer to as the representative set families
method, was presented by Marx [42], and applied by Kratsch and Wahlström in their
landmark paper [35] to derive new results on many problems in kernelization.

It is worth noting, however, that Theorem 1.2.1 has a skew-symmetric version,
where the same result holds with the conditions relaxed from “for all j ̸= i, Ai∩Bj ̸= ∅”
to “for all j > i, Ai∩Bj ̸= ∅”. More importantly, this skew-symmetry can be propagated
through the above line of work to derive a skew-symmetric representative set families
method. In Chapter 4 of this thesis, we apply this method to the minimum vertex cut
sparsifier problem, which is studied by Kratsch and Wahlström in [35], and derive a
stronger result [30].
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Chapter 2

The Even-Cycle Problem in
Hypergraphs

2.1 Introduction

In this chapter, we focus on a generalization of the even-cycle problem to hypergraphs.
Note that a C2k is a pair of internally disjoint paths of length k between a fixed pair of
vertices. Analogously, we will study hypergraphs where we forbid a certain number of
paths of length k between vertices. In a hypergraph H, a Berge path of length k is a set
of distinct vertices v0, v1, · · · , vk and a set of distinct hyperedges h1, h2, · · · , hk such that
{vi−1, vi} ∈ hi for 1 ≤ i ≤ k. Note that the hyperedges {hi} could intersect in many
different ways and in general two Berge paths of length k need not be isomorphic. We
call the vertices v0, · · · , vk the core vertices of the Berge path. Note that given a Berge
path, the core vertices need not be unique.

The definition of Berge paths and cycles was extended to arbitrary graphs by Gerbner
and Palmer [24]. We say a hypergraph H is a Berge-F if there is a bijection ϕ : E(F ) →
E(H) such that e ⊆ ϕ(e) for all e ∈ E(F ). Again note that two hypergraphs H1 and H2

may each be a Berge-F and could be non-isomorphic. We denote by FB,r the set of all
r-uniform hypergraphs which are a Berge-F and we will write FB when the uniformity
is fixed. Extending the extremal notation, given a family of r-uniform hypergraphs F ,
we denote the maximum number of hyperedges in an n vertex r-uniform hypergraph
which does not contain any F ∈ F as a subhypergraph by exr(n,F).

In this chapter, we are interested in studying exr(n,F) when F is a family of Berge
theta graphs. A theta graph, denoted by Θk,t, is the (2-uniform) graph given by a set of t
internally disjoint paths of length k between a fixed pair of vertices. Note that Θk,2 = C2k
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and so the study of the Turán number of Θk,t generalizes the even-cycle problem. We
will study r-uniform hypergraphs which do not contain a Berge-Θk,t, i.e. we will study
the Turán number for the family ΘB

k,t. An alternative definition of a hypergraph in ΘB
k,t

is a set of distinct vertices x, y, v11, · · · , v1k−1, · · · , vt1, · · · , vtk−1 and a set of distinct r-edges
h1
1, · · · , h1

k, · · · , ht
1, · · · , ht

k such that {x, vi1} ⊂ hi
1, {vij−1, v

i
j} ⊂ hi

j, and {vik−1, y} ⊂ hi
k

for 1 ≤ i ≤ t and 2 ≤ j ≤ k − 1. That is, we are forbidding that a pair of vertices
have t Berge paths of length k between them with disjoint internal core vertices. For
(2-uniform) graphs, the study of ex(n,Θk,t) has been investigated in [9, 14, 20]. In
particular, Faudree and Simonovits gave a more general version of the upper bound in
the even-cycle problem.

Theorem 2.1.1 (Faudree and Simonovits [20]). Given two integers k and t, there exists
a constant ck,t > 0, such that

ex(n,Θk,t) ≤ ck,tn
1+ 1

k .

Our first main result is an extension of this bound to r-uniform hypergraphs.

Theorem 2.1.2. For fixed r, given two integers k and t, there exists a constant cr,k,t, such
that

exr(n,Θ
B
k,t) ≤ cr,k,tn

1+ 1
k .

Recently, Conlon [14] complemented the upper bound of Faudree and Simonovits
and showed that the order of magnitude is correct when t is large enough relative to k.

Theorem 2.1.3 (Conlon [14]). For any natural number k ≥ 2, there exists a natural
number t such that

ex(n,Θk,t) = Ωk(n
1+ 1

k ).

Our second theorem shows that this is also the case in higher uniformities.

Theorem 2.1.4. For fixed r and any natural number k ≥ 2, there exists a natural number
t such that

exr(n,Θ
B
k,t) = Ωk,r(n

1+ 1
k ).

In Section 2.2 we prove Theorem 2.1.2 and in Section 2.4 we prove Theorem 2.1.4

2.2 Proof of Theorem 2.1.2

After submiting the work in this chapter, we learned that Theorem 2.1.2 also follows
from a more general theorem of Gerbner, Methuku, and Vizer (remark 13 in [26]). Their
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theorem states that if F is graph with a vertex whose deletion makes the graph acyclic,
then exr(n,Berge − F ) = O(ex(n, F )). Since Θk,t has this property, the upper bound
follows. We include our proof as well, as it gives an explicit multiplicative constant.
We further comment that this multiplicative constant was later improved by Gerbner,
Methuku and Palmer in [25].

The proof of Theorem 2.1.2 is inspired by a reduction lemma of Győri and Lemons
[28] (see also Lemma 2.16 of [37]). To prove Theorem 2.1.2 from Theorem 2.1.1, we
prove the following lemma, which says that given any r-uniform ΘB

k,t-free hypergraph,
we can reduce it to a Θk,t-free (2-uniform) graph which has a constant proportion of the
edges of the original r-uniform hypergraph.

Lemma 2.2.1 (Reduction Lemma). Let 2 ≤ m < r, and H be a r-uniform hypergraph
without ΘB

k,t. Define the m-uniform hypergraph G in the following way: Order the edges of
H arbitrarily and, going through the edges one by one, pick an m-set from each hyperedge
of H to be in G where the m set chosen is the one which has been chosen the fewest number
of times previously (break ties arbitrarily). Let Mk,i,r,m =

∑k+1
j=1

(
mk(i−1)+jm−m

r−m

)
+ k + 1.

Then the hypergraph G will have no ΘB,m
k,t and each of its edges will have multiplicity no

more than Mk,t,r,m.

Proof. Let’s first fix the notation we’ll use in the rest of the proof. We will call the
edges of H as hyperedges and the edges of G just as edges. We’ll use hi to denote the
hyperedges, and ei to denote edges. The edge set of H and G will be E(H) and E(G),
respectively, and their (common) vertex set will be denoted as V . For every h ∈ E(H),
the m-set chosen from h will be denoted as e(h).

First note that G is ΘB,m
k,t -free. Indeed, for any Berge path in G, say v0e1v1 · · · ekvk,

there is a corresponding Berge path in H v0h1...hkvk where hi is the hyperedge such that
ei = e(hi). Therefore, a ΘB,m

k,t in G would imply that there is a ΘB,r
k,t in H.

Now assume the lemma is not true and that there is an edge in G which was chosen
more than M := Mk,t,r,m times. It suffices for us to construct a ΘB,m

k,t in G, which
will give us a ΘB,r

k,t in H and results in a contradiction. Let e be an edge in G with some
multiplicity at least M+1, and x, y ∈ e. We will construct paths from x to y starting with
a path of length 2, with the goal to construct t paths of length k, yielding a contradiction.
Consider the last hyperedge which contributed to the multiplicity of e, call it h. Since
every time we select an m-set from a hyperedge in H, we select the one with the least
multiplicity, we know that every other m-set in h must have multiplicity at least M .
Since r > 2, we know there exists v1 ∈ h \ {x, y}. Therefore there exists a hyperedge
h1 ∈ E(H) such that {x, v1} ⊆ e(h1). On the other hand, note that v1, y ∈ h \ {x}, thus
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there exists h′
1 ∈ E(H) \ {h1} such that {v1, y} ⊆ e(h′

1). This gives us a length 2 path
from x to y, namely x, v1, y connected by h1 and h′

1. Note that e(h1) and e(h′
1) also have

multiplicity at least M , and e(h) is not part of the path.

To extend this result, we prove the following claim, from which the construction of
a ΘB

k,t in G follows easily follows easily.

Claim 2.2.1. Let S ⊂ V be a “forbidden set”, and M =
∑k−1

j=1

(|S|+jm−m
r−m

)
+ k + 1. For

i ≤ k − 2, suppose we have vertices x, v1, v2, · · · , vi, y and edges e1, · · · , ei+1 that form a
path in G in the order given, and the last edge ei+1 ∈ G with vi, y ∈ ei+1 has multiplicity
at least M −

∑i
j=1

(|S|+jm−m
r−m

)
− (i− 1) + 1. Let S ′ = S ∪ e1 ∪ · · · ∪ ei+1. Then we can find

vi+1 /∈ S ′ such that x, v1, v2, · · · , vi, vi+1, y forms a path, and the last edge in this new path
containing vi+1, y has multiplicity at least M −

∑i+1
j=1

(|S|+jm−m
r−m

)
− i+ 1.

Proof of Claim 2.2.1. To find the vertex vi+1, first we will find a new hyperedge h′ ∈
E(H) such that ei+1 ⊂ h′ and h′ ̸⊆ S ′. Note that the set S ′ has cardinality less than
|S|+ (i+ 1)m as we included all i+ 1 edges in the already existing path. We would like
to make sure the next edge we choose for the new path is different from all previous
edges. The number of hyperedges h such that e(h) = ei+1 and h ⊂ S ′ is at most(|S|+(i+1)m−m

r−m

)
. Now we let E ′ = {h ∈ E(H) | e(h) = ei+1, h ̸⊆ S ′}, then we have

|E ′| ≥ |{h ∈ E(H) | e(h) = ei+1}| −
(
|S|+ (i+ 1)m−m

r −m

)
≥ M −

i+1∑
j=1

(
|S|+ jm−m

r −m

)
− (i− 1) + 1 ≥ 5.

Now we pick h′ to be the last edge (in the original ordering) of E ′, which then implies
that every m-set in h′, besides ei+1, has multiplicity at least M −

∑i+1
j=1

(|S|+jm−m
r−m

)
− i+1.

Since h′ ̸⊆ S ′, we can find vi+1 ∈ h′ such that vi+1 /∈ S ′. Now we choose two m-sets from
h′, namely e′i+1 and ei+2 where vi, vi+1 ∈ e′i+1 and vi+1, y ∈ ei+2. This gives us a length
i+ 2 path from x to y, namely the path x, v1, · · · , vi, vi+1, y where the last two edges are
e′i+1 and ei+2, and the previous edges are the same as in the old length i + 1 path. The
last edge, ei+2, has multiplicity at least M −

∑i+1
j=1

(|S|+jm−m
r−m

)
− i + 1, as desired. Note

that the edge e(h′) is not part of the path, and as we discard the edge ei+1 in the original
path, we add in two new edges, namely e′i+1 and ei+2. ■

With this claim, we can now build the first path from x to y by induction on k. The
base case when k = 2 is already constructed before the statement of the claim. In the
induction step, when we already have a length k − 1 path, apply the claim with S = ∅
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and we obtain a length k path, as desired. Note that if all we need is just one path, then
we just need the multiplicity of the edge e to be at least Mk,1,r,m.

To build t paths, we will construct each path separately. Assume that we have built
i − 1 paths. To build the ith path, the forbidden set S would be the union of all edges
in previous paths. This ensures that the paths we are building are vertex-independent
and edge-distinct. It then follows that to build t vertex-independent paths from x to y,
it suffices for us to have that the multiplicity of the edge e to be at least Mk,t,r,m. This
gives us a ΘB,m

k,t in the graph G. If we then choose hyperedges in H that gives the edges
in this ΘB,m

k,t , we obtain a ΘB,r
k,t in H. Such hyperedges can be chosen because all edges

in this ΘB,m
k,t in G have multiplicity at least 1, and these hyperedges are guaranteed to be

distinct since for any two hyperedges chosen, say h1 and h2, e(h1) ̸= e(h2), and therefore
h1 ̸= h2. This leads to a contradiction. Therefore all edges in G must have multiplicity
at most Mk,t,r,m.

By Theorem 2.1.1, there exists a constant ck,t such that ex(n,Θk,t) ≤ ck,tn
1+ 1

k . Now
assume that a r-uniform hypergraph has more than Mk,t,r,2ck,tn

1+ 1
k edges. Then if we

reduce this hypergraph into a (2-uniform) graph with the scheme described above, we
will either have a graph with more than ck,tn

1+ 1
k edges, or it will have at least one edge

with more than Mk,t,r,2 multiplicity. Both cases imply that there is a Θk,t in the reduced
graph, which leads to a ΘB

k,t in the original hypergraph. This completes the proof of
Theorem 2.1.2.

2.3 Preliminaries for Theorem 2.1.4

To prove Theorem 2.1.4, given any natural number k ≥ 2, we need to construct a
ΘB

k,t-free r-uniform hypergraph with Ω(n1+ 1
k ) edges where t is a large enough constant

depending only on k and r. Bukh [6], building from work of Blagojević, Bukh and
Karasev [2], found an elegant random algebraic construction for Turán type problems,
and we will use this method to construct our hypergraphs. This method has recently
been used with success in both the graph [7,9,14] and hypergraph setting [39].

Let k and r be fixed, and for q a prime power let Fq be the finite field of order q.
We will work with polynomials in kr variables over Fq. Let Pd be the set of such poly-
nomials of degree at most d. That is, Pd consists of linear combinations of monomials∏kr

i=1 x
αi
i where

∑
αi ≤ d. For the remainder of this chapter we will use the term ran-

dom polynomial to denote a polynomial chosen uniformly at random from Pd. Note that
the distribution of random polynomials is equivalent to choosing the coefficient of each
monomial

∏kr
i=1 x

αi
i independently and uniformly from Fq.
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We will need to know the probability that a random polynomial vanishes on a fixed
set of points. In particular, if we fix one point, since the constant term of a random
polynomial is chosen uniformly from Fq, we have the following lemma.

Lemma 2.3.1. Let t be a natural number. If f is a random polynomial of degree d in t

variables, then, for any fixed x ∈ Ft
q,

P[f(x) = 0] =
1

q
.

The next lemma, proved as Lemma 2.3 in [7] and Lemma 2 in [14] extends the
conclusion of Lemma 2.3.1.

Lemma 2.3.2. Let t be a natural number. Assume x1, · · · , xz are z distinct points in Ft
q.

Suppose q >
(
z
2

)
and d ≥ z − 1. Then if f is a random polynomial in t variables of degree

d,

P[f(xi) = 0 for all i = 1, · · · , z] = 1

qz
.

We now define the graphs that we will be interested in. Let N = qk. We will
construct an r-partite r-uniform hypergraph on rN vertices as follows. Let V1, . . . , Vr be
the partite sets, each a distinct copy of Fk

q . Choose f1, f2, · · · , fk(r−1)−1 : Fkr
q → Fq to

be random polynomials of degree at most d := k(2k + 1), chosen independently. For
v1, . . . , vr with vi ∈ Vi, we declare (v1, · · · , vr) to be an edge if and only if

f1(v1, v2, · · · , vr) = f2(v1, v2, · · · , vr) = · · · = fk(r−1)−1(v1, v2, · · · , vr) = 0.

We use the term random polynomial graph to describe the distribution of hypergraphs
obtained this way. Since these polynomials are chosen independently, we know from
Lemma 2.3.1 that the probability of a given hyperedge is in a random polynomial graph
is q1−k(r−1). The total number of possible hyperedges is N r = qkr. Therefore the ex-
pected number of hyperedges is qkrq1−k(r−1) = qk+1 = N1+1/k.

We will be interested in subgraphs that appear in a random polynomial graph. Since
hyperedges appear when a system of polynomials vanishes, we will describe subgraphs
as varieties. Let Fq be the algebraic closure of Fq and let t be a natural number. A variety
over Fq is a set of the form:

W = {x ∈ Ft

q : f1(x) = f2(x) = · · · = fs(x) = 0}

for a collection of polynomials f1, · · · , fs : F
t

q → Fq. In other words, a variety is the set
of common roots of a set of polynomials. We say W is defined over Fq if the coefficients
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of these polynomials are from Fq and write W (Fq) = W ∩ Ft
q. We say W has complexity

at most M if s, t and the maximum degree of the polynomials are all bounded by M .
We will be very interested in how many points can be on a variety, and we will use
the following theorem, proved by Bukh and Conlon ([7] Lemma 2.7) using tools from
algebraic geometry.

Theorem 2.3.3. Let q be sufficiently large and suppose W and D are varieties over Fq of
complexity at most M which are defined over Fq. Then one of the following holds:

• |W (Fq) \D(Fq)| ≤ cM , where cM depends only on M , or
• |W (Fq) \D(Fq)| ≥ q/2.

Using these tools, we will show in the following section that with high probability we
may modify a random polynomial graph to obtain a ΘB

k,t-free hypergraph with Ω(n1+1/k)

edges.

2.4 Proof of Theorem 4

In this section we show that there exists an n vertex ΘB
k,t-free hypergraph with Ωk,r(n

1+1/k)

hyperedges. Our proof is an adaption of [14] to the hypergraph setting. Let q be a suf-
ficiently large prime power and let G be a random polynomial graph on n = rN = rqk

vertices defined in the previous section. As noted before the expected number of hyper-
edges in G is

N1+1/k = Ω(n1+1/k). (2.1)

We are interested in ΘB
k,t as a subgraph of G, and so we will be interested in Berge

paths between vertices. Suppose now that x and y are two fixed vertices in G and let
S be the set of Berge-paths with length k between them. We will be interested in the
moments of the random variable |S|. Let m be fixed and note that |S|m is the number
of ordered collections of m Berge paths of length k between x and y. These paths can
be overlapping or identical, and the total number of hyperedges in any collection of m
paths is at most km. The probability that any hyperedge is in G is q1−k(r−1) because the
polynomials are chosen independently, and so since q is sufficiently large, Lemma 2.3.2
implies that for z − 1 ≤ d the probability of any particular collection with z hyperedges
is in G is qz(1−k(r−1)). Now if we denote Pm,z as the number of ordered collections of m
paths between x and y such that their union has z hyperedges in total, we have:

E[|S|m] =
km∑
z=1

Pm,zq
z−zk(r−1),

10



as long as km ≤ d. Now we shall estimate Pm,z by estimating the maximum number
of vertices there can be in any particular collection with z hyperedges. Namely, if a
collection has hyperedges h1, · · · , hz, then we want to estimate max | ∪i∈[z] hi|.

Claim 2.4.1. If the union of m Berge-paths from x to y, each of length k, has z edges in
their union {hi}zi=1, then ∣∣∣∣∣

z⋃
i=1

hi \ {x, y}

∣∣∣∣∣ ≤ zk(r − 1)− z

k
.

Proof. Given such a collection, assume | ∪ hi \ {x, y}| = n0. Let P1, . . . , Pm be the set of
paths. We will think about P1, . . . , Pm as both a set of vertices and as a set of edges, and
we let ni and zi be the number of vertices and edges respectively in Pi\(P1 ∪ · · · ∪ Pi−1).
Let z′i = zi if ni > 0 and z′i = 0 if ni = 0.

If ni > 0, we first give a lower bound on zi. If we consider the edges in Pi \
(P1 ∪ · · · ∪ Pi−1), this set of edges will form some number of disjoint Berge paths. Since
consecutive edges in a Berge path must overlap, then in each of these smaller Berge
paths, at least 2 vertices will have already been seen in P1∪· · ·∪Pi−1. Then if one of the
smaller Berge paths has a edges, there will be at most a(r− 1)− 1 vertices contained in
these edges that were not in P1 ∪ · · · ∪ Pi−1. Since zi is the sum of the number of edges
in each of the smaller Berge paths, we have zi ≥ ni+1

r−1
. Let r′ be the number of ni which

are greater than 0. Let

z′ =
m∑
i=1

z′i ≤ r′k,

and so r′ ≥ z′

k
. On the other hand,

z′ ≥
∑
i:ni>0

ni + 1

r − 1
=

n0 + r′

r − 1
≥ n0

r − 1
+

z′

k(r − 1)
.

This implies

n0 ≤
z′k(r − 1)− z′

k
.

Since z′ ≤ z the result follows.

We can now bound Pm,z.

Claim 2.4.2. Assume that km ≤ d. Then Pm,z = Ok,r(q
zk(r−1)−z)

Proof. We want to count the number of all possible ordered collections of m Berge-paths
between x and y with z edges in their union. Let V = zk(r−1)−z

k
be the upper bound on

11



the number of vertices, then we first choose the vertices that will be in the collection.
There are less than (rN)V number of ways to do this. Then we choose z hyperedges,
each having r vertices. The number such choices is bounded by

(
V
r

)z
. Last we choose

2 vertices from each hyperedge to make up the ordered set of core vertices. This is
bounded by r2z, which eventually gives us

rV
(
V

r

)z

r2zNV = Ok,r(N
V ) = Ok,r(q

zk(r−1)−z),

where the implied constant uses that m is bounded above by a constant depending on
k. Note that every collection of m paths is counted by this method in at least one way,
giving the upper bound on Pm,z.

Thus, when m ≤ 2k + 1 we have z ≤ km ≤ d (since d = k(2k + 1)) and we may
apply Lemma 2.3.2 to find

E[|S|m] =
km∑
z=1

Pm,zq
z−zk(r−1) ≤ kmCk,r := C. (2.2)

Where Ck,r is a constant dependent on k and r, and C is used to simplify our notation.

Now if we want to apply tools from algebraic geometry, we need to write S as a
variety. However, this cannot be done directly since there is no fixed set of polynomi-
als whose set of common roots is exactly S. Therefore, we use the following analysis to
bound |S|. Any path in S is a sequence of core vertices and edges (x, h1, v1, h2, · · · , vk−1, hk, y).
We may partition the set of paths into which partite set each vi is in. That is, S can be
partitioned into disjoint sets depending on which partite sets each core vertex belongs
to. Namely, we can let St1,··· ,tk−1

denote the set of paths from x to y such that the ith
core vertex vi belongs to Vti.

Now if we let σ denote any length k − 1 tuple from [r]k−1, then we have

S =
⋃

σ∈[r]k−1

Sσ,

and this is a disjoint union.

Fix any arbitrary Sσ. For notation, we denote the core vertices in an arbitrary path
as v1, · · · , vk−1 and the non core vertices in hyperedge hi as wi

1, · · · , wi
r−2. We also need

to make sure that the non core vertices are ordered based on their partite sets. In other
words, if wi

j1
∈ Vt1 and wi

j2
∈ Vt2 where j1 < j2, then t1 ≤ t2.

Given such a sequence p = (v1, · · · , vk−1, w
1
1, · · · , w1

r−2, · · · , wk
1 , · · · , wk

r−2) which de-
notes a path (that is, p is a vector ordered with the core vertices first and the non

12



core vertices after), let the polynomials fi,1, · · · , fi,k be extensions to the polynomial fi.
Namely,

fi,1(p) = fi(x, v1, w
1
1, · · · , w1

r−2),

fi,2(p) = fi(v1, v2, w
2
1, · · · , w2

r−2),

· · ·

fi,k(p) = fi(vk−1, y, w
k
1 , · · · , wk

r−2),

where the inputs to each fi are reordered according to which partite sets the vertices
are in. For example, if x ∈ V2, v1 ∈ V3, then

fi,1(p) = fi(w
1
1, x, v1, w

1
2, · · · , w1

r−2).

Now we may define the variety Tσ as

{p ∈ Fk(r−2)+k−1
q : fi,1(p) = · · · = fi,k(p) = 0 for all i in [k(r − 1)− 1]},

where p ∈ Fk(r−2)+k−1
q runs over sequences

(v1, · · · , vk−1, w
1
1, · · · , w1

r−2, · · · , wk
1 , · · · , wk

r−2).

With this restriction on ordering, we see that Sσ ⊆ Tσ(Fq). Note that Tσ contains all
of the paths in Sσ, but may also contain walks that are not paths.

If Tσ(Fq) contains a degenerate walk x, v1, v2, · · · , vk−1, y, then one of the following
three conditions must be true: x = vb for some b ∈ [k − 1], va = y for some a ∈ [k − 1],
or va = vb for some a ̸= b ∈ [k − 1]. Therefore we can consider the collections of sets:

W0,b = Tσ ∩ {v1, · · · , vk, w1
1, · · · , w1

r−2, · · · , wk
1 , · · · , wk

r−2 : x = vb},
Wa,b = Tσ ∩ {v1, · · · , vk, w1

1, · · · , w1
r−2, · · · , wk

1 , · · · , wk
r−2 : va = vb},

Wa,0 = Tσ ∩ {v1, · · · , vk, w1
1, · · · , w1

r−2, · · · , wk
1 , · · · , wk

r−2 : va = y}.

Each of these sets is also a variety with complexity bounded in terms of k and r. Let W
be the union of all of the W0,b, Wa,b, and Wa,0 where the union is over all a and b with
1 ≤ a < b ≤ k − 1. If X and Y are varieties with complexity bounded in terms of k
and r, then we claim that X ∪Y is also a variety with complexity bounded in terms of k
and r. To see this, if X is the set of points where the set of polynomials {fi} vanish and
Y is the set of points where the polynomials {gj} vanish, then X ∪ Y is exactly the set
of points where the polynomials {figj} vanish. Since W is the union of O(k2) varieties,
we have that W is also a variety with complexity bounded in terms of k and r. Since

13



Sσ = Tσ \ W , we may apply Theorem 2.3.3 to Sσ (for algebraic geometry background
see [48] and for a similar discussion of applying Theorem 2.3.3 see Section 3 of [14]).

Now if we put everything together, we see that there exists a constant cσ, dependent
on k and r, such that either |Sσ| ≤ cσ or |Sσ| ≥ q

2
. This conclusion holds true for any

arbitrary σ ∈ [r]k−1. Looking at S, we see that either |S| =
∑

σ∈[r]k−1 |Sσ| ≤ Ck,r for some
constant Ck,r dependent on k and r, or |S| > Ck,r, which implies that there exists σ such
that |Sσ| > cσ and therefore |S| ≥ |Sσ| > q

2
. Now by (2.2) and Markov’s inequality, for

m ≤ 2k + 1 we have

P[|S| > Ck,r] = P[|S| > q

2
] = P[|S|m > (q/2)m] ≤ C

(q/2)m
.

Call a pair of vertices (x, y) bad if it has more than Ck,r length k paths between them. If
B is the random variable denoting the number of bad pairs, then we have

E(B) ≤ n2 × C

(q/2)m
= Ok,r(q

2k−m) = Ok,r

(
1

q

)
,

when we take m = 2k + 1. Therefore by Markov’s Inequality, P[B ≥ 1] → 0 as n → ∞.
Now let X be the number of edges, then by (2.1) the expected number of edges in G is
N1+1/k. The variance is

E[X2]− E[X]2 =
∑
i,j

E[HiHj]− E[Hi]E[Hj] = N r(q1−k(r−1) − q2−2k(r−1)) ≤ E[X]

where Hi are indicator random variables for hyperedges and for i ̸= j, E[HiHj] =

E[Hi]E[Hj] because a pair of events that 2 edges appear or not are independent due to
Lemma 2.3.2. By Chebyshev’s Inequality,

P[|X −N1+1/k| ≥ 1

2
N1+1/k] ≤ 4

N1+1/k

which goes to zero. Therefore with high probability this hypergraph on rN vertices
has Ωk,r(N

1+1/k) edges, and it contains no ΘB
k,Ck,r+1. This completes the proof of Theo-

rem 2.1.4.

2.5 Conclusion

In this chapter we showed that for fixed k, r, t there is a constant ck,r,t such that

exr(n,Θ
B
k,t) ≤ cr,k,tn

1+ 1
k ,
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and that this order of magnitude is correct when t is large enough relative to r and k.
That is, for fixed k and r there is a constant ck,r such that

exr(n,Θ
B
k,ck,r

) = Ωk,r(n
1+ 1

k ).

We end with some open questions. First, it would be interesting to determine the
dependence on r. Even when t = 2 and k ∈ {2, 3, 5} this dependence is unknown.
For example, it is known that exr(n,CB

4 ) = Θ
(
n3/2

)
when 2 ≤ r ≤ 6, but the order of

magnitude is unknown for r ≥ 7 (c.f. [27]). It would also be interesting to determine
how the multiplicative constant of exr(n,Θ

B
k,t) depends on t when n ≫ t ≫ 1 and r

and k are fixed. Finally, in this chapter we worked with the least restrictive definition
of paths between vertices in hypergraphs. One could forbid only certain types of paths
and demand that no pair of vertices have more than t of these paths between them.

15



Chapter 3

Improving the Constant

3.1 Introduction

In this chapter, we present an improvement to the constant factor in the bound ex(n,C2k) =

Ok(n
1+1/k). To discuss methods that lead to upper bounds on ex(n,C2k), we first show

a simple derivation of ex(n, {C3, C4, · · · , C2k}) ≤ cn1+1/k for some constant c. Consider
a graph containing Θ(n1+1/k) edges with girth at least 2k + 1, and reduce it to a graph
with minimum degree Θ(n1/k). Fix arbitrary vertex v, we start a Breadth-First Search
(BFS) at v and observe that for the first k levels of the breadth-fist search tree, every
level must expand by a factor of Θ(n1/k) compared to the previous level. In particu-
lar, no two vertices with depth less than k can have common neighbors with greater
depth. Since the kth level cannot have more than n vertices, the bound follows. We
present this derivation since the best upper bounds on ex(n,C2k) are, in essence, all
established using this same approach. As we will see shortly, employing this method
imposes fundamental limitations to the results derivable.

The first important upper bound on ex(n,C2k) was proved by Bondy and Simonovits [4]
in 1974, where they showed ex(n,C2k) ≤ 20kn1+1/k. This result is subsequently im-
proved through a line of researches, most recently by Pikhurko [47] to ex(n,C2k) ≤ (k−
1)n1+1/k +Ok(n) in 2010 and by Bukh and Jiang [8] to ex(n,C2k) ≤ 80

√
k loge kn

1+1/k +

Ok(n) in 2017. Our main contribution in this chapter is the following theorem.

Theorem 3.1.1. Fix k, let G be a n-vertex graph where n ≥ (20k)4k
3+2k2. If

|E(G)| > 16
√
5
√

k loge k · n1+1/k + 8000k4n1+(2k−1)/(2k2),

then G contains a copy of C2k.
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For the rest of this chapter, we will abbreviate loge as log. Our approach is an im-
proved version of Bukh–Jiang’s approach, and therefore suffers the same limitation as
all BFS arguments. More specifically, consider a bipartite graph G with bipartition V1, V2

such that |V1| = n, |V2| = n/(k − 1). The BFS argument for the girth problem can be
exploited to show that e(G) ≤ c(k−1)−1/2n1+1/k if G has girth at least 2k+1 (For a more
detailed argument, see [46]). Now if we duplicate each vertex in V2 into k − 1 copies,
we obtain a graph on 2n vertices and c

√
k − 1n1+1/k edges with no C2k. Therefore, the

best upper bound on ex(n,C2k) derivable from the BFS argument is c
√
kn1+1/k for fixed

constant c. To break the O(
√
kn1+1/k) threshold would require a different approach.

Our result improves the best known bound for ex(n,C2k) by a factor of
√
5 log k,

taking us one step closer to the limitation of the method. Before discussing the proof,
we would like to point out the following facts about this chapter. This chapter is modi-
fied from Bukh–Jiang’s manuscript. While we had made global modifications to Bukh–
Jiang’s methods, most improvements made are local. In particular, it is highly similar to
their paper mathematically, with a few statements and minor proofs largely unmodified.
The author’s intentions in writing this chapter this way are to give a more intuitive de-
livery of Bukh–Jiang’s methods, to present simplifications and improvements that lead
to a better result, and to avoid confusing readers with different notations and proof
structures that demonstrate the same ideas. Therefore, this chapter adopted the same
notation with some unmodified definitions from Bukh–Jiang’s paper, and reshaped the
delivery structure and language to uncover the underlying ideas and intuition.

To begin our proof, in Section 3.2 we describe the graph structures used in this
chapter. For a detailed discussion of how our methods relate and differ from Pikhurko’s
and Bukh–Jiang’s work, please see Section 3.3.

3.2 Graph Reduction and Exploration

To employ the breadth-first search approach, we first process our graph to gain control
over the degrees of vertices. Classically, the graph is reduced to have minimum degree
Ok(n

1/k) at the expense of half of the edges. However, in Bukh–Jiang’s approach and in
our approach, control over maximum degree is also required. Bukh and Jiang modified
the BFS process to avoid vertices of high degrees, while we make use of the following
reduction lemma.

Reduction Lemma. Fix α ∈ (0, 1), let γ = (20/α)−2/α. Let dmin(G), dmax(G) denote the
minimum and maximum degree of a graph G, respectively. If a graph G on n vertices
has at least cn1+α edges, then it contains a subgraph G′ such that |V (G′)| ≥ cγnα/2,
|E(G)| ≥ (c/4)v(G′)1+α, dmin(G

′) ≥ (c/2)v(G′)α, and dmax(G
′)/dmin(G

′) ≤ 1/γ.

17



An initial version of this lemma was first proved by Erdös and Simonovits [18], and
various forms of this lemma occur in other works. Bukh and Jiang proved a slightly
different version of this lemma in their addendum. By slightly modifying their proof,
we obtain the above lemma. This proof is included in the Appendix for completeness.

With this structure in mind, our real result in this chapter is the following theorem.

Theorem 3.2.1. Fix k ≥ 4, let ∆ =
√
k(20k)2k, and let d ≥ max(2

√
5
√
k log kn1/k, (20k)4k

2+2k).
If G is a graph on n vertices such that dmin(G) ≥ 2d+ 5k2 and dmax(G) ≤ ∆d, then G con-
tains a copy of C2k.

Theorem 3.1.1 then follows from Reduction Lemma and Theorem 3.2.1.

Proof of Theorem 3.1.1. Assume a graph H on m vertices has more than 16
√
10
√
k log k ·

n1+1/k + 8000k4n1+(2k−1)/(2k2) edges, then we can find a bipartite subgraph H ′ with
at least half of its edges. Using the Reduction Lemma, we find a subgraph G on
n ≥ 4

√
10
√
k log kγm1/(2k) vertices and at least 2

√
10
√
k log kn1+1/k edges, where γ =

(20k)−2k. Now we compute the minimum degree in G.

Let c = e(H)/m1+1/k, we have that c ≥ 8
√
10
√
k log k+4000k4/m1/(2k2), which implies

that

dmin(G) ≥ c

2
n1/k ≥ 4

√
10
√

k log kn1/k +
2000k4(γm1/(2k))1/k

m1/(2k2)
≥ 4

√
10
√

k log kn1/k + 5k2.

Now from Pikhurko’s Result [47], we know that if dmin(G) ≥ kn1/k, then G contains a
C2k. Therefore, Reduction Lemma implies dmax(G) ≤ (20k)2kkn1/k. Let d = 2

√
10
√
k log kn1/k,

∆ =
√
k(20k)2k. Theorem 3.2.1 completes the proof.

To prove Theorem 3.2.1, we elaborate further on the graph structures. Let G be
a graph as in the statement of Theorem 3.2.1. Fix arbitrary vertex v of G and start a
breadth-first search process at v. Let Vi be the set of vertices at minimum distance i

from v for i ∈ [k]. We recall the following definition of a tri-layered graph, which is the
basis of our discussions in Section 3.4, from Bukh–Jiang.

Definition 3.2.1 (Bukh–Jiang [8]). A graph G is called trilayered if its vertex set can be
partitioned into V1, V2, V3 such that all edges in G are between V1, V2 or between V2, V3. For
arbitrary G, we use G[V1, V2, V3] to denote the induced trilayered graph of G on V1, V2 and
V3. For A,B,C,D ∈ R, we say that a trilayered graph has minimum degree [A : B,C : D]

if the minimum degree from V1 to V2, V2 to V1, V2 to V3 and V3 to V2 are at least A,B,C,D,
respectively.
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The last ingredient we need is the following definition of a Θ-graph, which is at the
core of all our future discussions.

Definition 3.2.2. A Θ-graph is a cycle of length at least 2k with a chord. That is, an edge
outside of the cycle connecting two vertices of the cycle.

The rest of the chapter is organized as follows: In Section 3.3, we recall several
important results from Pikhurko and Bukh–Jiang, which prove the non-existence of Θ-
graphs in the trilayered subgraphs formed by our breadth-first search exploration. In
Section 3.4, which contains our main improvements in this chapter, we argue that if
certain conditions hold, then a trilayered graph satisfies certain minimum degree con-
dition must be present. We then embed a Θ-graph in such subgraphs, contradicting our
result from Section 3.3. In Section 3.5, we show that either the aforementioned con-
ditions hold, or the levels from exploration expand exponentially. Final computations
then prove Theorem 3.2.1.

3.3 Results on Θ-Graphs

To argue for non-existence of Θ-graphs in our exploration, we recall results of Pikhurko.

Lemma 3.3.1 (Lemma 2.2 in [47]). Let k ≥ 3. Any bipartite graph H of minimum degree
at least k contains a Θ-graph.

Corollary 3.3.2. Let k ≥ 3. Any bipartite graph H of average degree at least 2k contains
a Θ-graph.

Lemma 3.3.3 (Claim 3.1 in [47]). Suppose G contains no C2k. For 1 ≤ i ≤ k− 1, neither
of G[Vi] and G[Vi, Vi+1] contains a bipartite Θ-graph.

Using these results, Pikhurko showed that every level must expand by a factor of
roughly d/k compared to the previous level. The bound ex(n,C2k) ≤ O(kn1+1/k) then
followed. Bukh and Jiang improved on his method by analyzing three consecutive
levels, proving a better expansion ratio among them. They employed the following
technical definition, which generalized Θ-graphs to three levels, and proved the next
lemma in conjunction.

Definition 3.3.1. Let G be a trilayered graph with layers V1, V2, V3. A Θ-graph T in G is
well-placed if every vertex of T in V2 is adjacent to some vertex of V1 not in T .

Lemma 3.3.4 (Lemma 10 in [8]). Suppose G contains no C2k. For 1 ≤ i ≤ k − 1, the
graph G[Vi−1, Vi, Vi+1] contains no well-placed Θ-graphs.
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Note that Lemma 3.3.4 is analogous to Lemma 3.3.3. To prove statements equivalent
to Lemma 3.3.1 in trilayered graphs, Bukh and Jiang analyzed trilayered subgraphs
with specific minimum degree structures. They first determined sufficient conditions
for the existence of such trilayered graphs, then showed that if such subgraphs exist, a
(well-placed) Θ-graph could be embedded inside. Finally, they argued that either the
preceding conditions hold, or the levels must expand by an average factor of O( d√

k log k
).

Their result followed.

In this chapter, we follow the same proof structure. We improve on Bukh–Jiang’s
result by weakening the conditions required for minimum degree trilayered subgraphs
to be present, and presenting a better method to embed well-placed Θ-graphs in such
subgraphs. These changes, presented in the following sections, lead to our O(

√
log k)

improvement on the best-known upper bound for ex(n,C2k).

3.4 Search for Θ-graphs

In this section, we present the central arguments of this chapter. Our results are sum-
marized in the following lemma, which states sufficient conditions for the existence of
(well-placed) Θ-graphs.

Lemma 3.4.1. Let G be a trilayered graph with layers V1, V2, V3, such that dmin(G) ≥
2d+ 5k2 and dmax(G) ≤ ∆d. If the following conditions hold:

d · e(V1, V2) ≥ 40k log k|V3|, (3.1)

e(V1, V2) ≥ 6k(log k + 1)2(2∆k)2k−1|V1|, (3.2)

e(V1, V2) ≥ 20(log k + 1)|V2| (3.3)

then either there is a Θ-graph in G[V1, V2], or there is a well-placed Θ-graph in G[V1, V2, V3].

This lemma is an improvement over Lemma 6 in Bukh–Jiang. We removed two of
the conditions and improved the last condition by a factor of (log k + 1).

To prove Lemma 3.4.1, the rest of this section is organized as follows: In Lemma 3.4.2,
we show that given a trilayered graph formed by three consecutive levels in our BFS pro-
cess, either we can find a trilayered subgraph with desired minimum degree structure,
or we can find a trilayered subgraph with stronger constraints on its edges. This process
can then be iterated — In Lemma 3.4.3, we prove that under the conditions stated in
Lemma 3.4.1, Lemma 3.4.2 can be iterated to show the existence of a desired trilay-
ered subgraphs. Finally, in Lemma 3.4.4, we show that a (well-placed) Θ-graph can be
embedded in such subgraphs, which completes the proof.
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Without further delay, we now quote the following result, which is Lemma 7 in
Bukh–Jiang.

Lemma 3.4.2. Let a,A,B,C,D be positive real numbers. Suppose G is a trilayered graph
with layers V1, V2, V3 and the degree of every vertex in V2 is at least d + 4k2 + C. Assume
also that

a · e(V1, V2) ≥ (A+ k + 1)|V1|+B|V2|. (3.4)

Then one of the following holds:

I) There is a Θ-graph in G[V1, V2].
II) There exist non-empty subsets V ′

1 ⊂ V1, V ′
2 ⊂ V2, V ′

3 ⊂ V3 such that the induced
trilayered subgraph G[V ′

1 , V
′
2 , V

′
3 ] has minimum degree at least [A : B,C : D].

III) There is a subset Ṽ2 ⊂ V2 such that e(V1, Ṽ2) ≥ (1− a)e(V1, V2), and |Ṽ2| ≤ D|V3|/d.

A proof of this lemma, as presented in Bukh–Jiang, is included in the Appendix for
completeness. Here the parameter a can be interpreted as the edge loss ratio. More
specifically, in case (I) the proof of Lemma 3.4.1 is complete, and similarly in case (II)
we are done by Lemma 3.4.4. In case (III), we found Ṽ2 that shrinks proportionally
compared to V2, while being adjacent to most edges between V1 and V2. We can then
apply Lemma 3.4.2 in G[V1, Ṽ2, V3], thereby iterating this process. In the end, we will
either obtain a subset of vertices of V2 with an overly high average degree, or lands
in case (I) or (II). This procedure is done precisely in the following lemma, which is
Lemma 8 in Bukh–Jiang.

Lemma 3.4.3. Let G be a trilayered graph with layers V1, V2, V3 satisfying conditions (3.1),
(3.2) and (3.3). Let C be a positive real number, such that the minimum degree from V2

to V3 is at least d+ 4k2 + C. Then one of the following holds:

I) There is a Θ-graph in G[V1, V2].
II) There are non-empty subsets V ′

1 ⊂ V1, V ′
2 ⊂ V2, and V ′

3 ⊂ V3 such that the induced
trilayered subgraph G[V ′

1 , V
′
2 , V

′
3 ] has minimum degree at least [A : B,C : D], where

A,B are real numbers and C,D are integers. Moreover, B ≥ 5, and

A ≥ 2k(∆D)D−1, (3.5)

(B − 4)D ≥ 2k. (3.6)

Proof. This proof is an improved version of Bukh–Jiang’s proof. Assume for the sake
of contradiction that neither of the conclusions are true. We will first show that the
conditions of Lemma 3.4.2 hold for a tuple of well defined A,B and D. Due to our
assumptions, the only probable conclusion of Lemma 3.4.2 would be (III), which gives
us Ṽ2 ⊆ V2. We then iterate this procedure for t = log k steps on Ṽ2 and subsequent
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subsets of V2. This process will generate a chain of sets V
(t)
2 ⊆ V

(t−1)
2 ⊆ · · · ⊆ V

(1)
2 ⊆

V
(0)
2 = V2. Finally, we will show a contradiction in V

(t)
2 to conclude the proof.

Let ai = 1
t−i+1

, where i ranges from 0 to t − 1. Let V (0)
2 = V2. For V

(i)
2 that is well

defined, set

di = e(V1, V
(i)
2 )/|V (i)

2 |,

Ai = aie(V1, V
(i)
2 )/2|V1| − k − 1,

Bi = aidi/4 + 5,

Di = ⌊min(2k, 10k/aidi)⌋.

Here di is the average degree from V
(i)
2 to V1. We prove the following simple claim.

Claim 3.4.1. For all i = 0, · · · , t− 1, we have di < 2k.

Proof of Claim 3.4.1. If we have |V (i)
2 | ≤ |V1|, then

2e(V1, V
(i)
2 )

|V1|+ |V (i)
2 |

≥ e(V1, V
(i)
2 )

|V1|
≥ 1

t+ 1

e(V1, V2)

|V1|
≥ 2k,

which then implies outcome (I) by Corollary 3.3.2. On the other hand, if |V (i)
2 | ≥ |V1|

and di ≥ 2k, then
2e(V1, V

(i)
2 )

|V1|+ |V (i)
2 |

≥ e(V1, V
(i)
2 )

|V (i)
2 |

= di ≥ 2k,

which again leads to outcome (I). Therefore di < 2k. ■

Now note that Ai, Bi, Di satisfy constraints (3.5) and (3.6). Indeed, (3.6) follows as
long as di < 2k, and for (3.5), we have by (3.2)

Ai = aie(V1, V
(i)
2 )/2|V1| − k − 1 ≥ 1

2(t+ 1)2
e(V1, V2)

|V2|
− k − 1

(3.2)
≥ 3k(2∆k)2k−1 − k − 1 ≥ 2k(∆Di)

Di−1.

Therefore, if we apply Lemma 3.4.2, the only possible outcome is (III). The following
claim is the key to our iteration process.

Claim 3.4.2. For V
(i)
2 that is well-defined, condition (3.4) of Lemma 3.4.2 hold with re-

spect to the above defined ai, Ai, Bi, C,Di. Moreover, let V (i+1)
2 ⊆ V

(i)
2 be the set derived
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from Lemma 3.4.2. We have the following invariants:

e(V1, V
(i+1)
2 ) ≥ (1− ai)e(V1, V

(i)
2 ), (3.7)

di+1 ≥ aidi
t− i

t+ 1

d · e(V1, V2)

10k|V3|
. (3.8)

Proof of Claim 3.4.2. This proof will proceed by induction. We first show that condi-
tion (3.4) holds for i = 0.

(A0 + k + 1)|V1|+Bi|V2| =
3

4
a0e(V1, V2) + 5|V2|

(3.3)
≤ 3

4
a0e(V1, V2) +

1

4(t+ 1)
e(V1, V2) = a0e(V1, V2).

Therefore, we can apply Lemma 3.4.2 to obtain Ṽ2 ⊆ V2 as in outcome (III). Set V (1)
2 =

Ṽ2. Invariant (3.7) then follows directly from the conclusions of Lemma 3.4.2. For (3.8),
since |V (1)

2 | ≤ D0|V3|/d, we have

d1 =
e(V1, V

(1)
2 )

|V (1)
2 |

≥ (1− a0)e(V1, V2)

D0|V3|/d
≥ (1− a0)a0d0

d · e(V1, V2)

10k|V3|
.

This completes the proof for the base case. For induction, note that iterative application
of (3.7) gives

e(V1, V
(i)
2 ) ≥ e(V1, V2)

i−1∏
j=0

(1− aj) =
t− i+ 1

t+ 1
e(V1, V2). (3.9)

This inequality helps us show condition (3.4) again. Indeed,

(Ai + k + 1)|V1|+Bi|V (i)
2 | = 3

4
aie(V1, V

(i)
2 ) + 5|V (i)

2 | ≤ 3

4
aie(V1, V

(i)
2 ) + 5|V2|

(3.3)
≤ 3

4
aie(V1, V

(i)
2 ) +

1

4(t+ 1)
e(V1, V2)

(3.9)
≤ 3

4
aie(V1, V

(i)
2 ) +

t+ 1

4(t+ 1)(t− i+ 1)
e(V1, V

(i)
2 )

=
3

4
aie(V1, V

(i)
2 ) +

1

4
aie(V1, V

(i)
2 ) = aie(V1, V

(i)
2 ).

Therefore, by Lemma 3.4.2 again, there is a subset V (i+1)
2 ⊂ V

(i)
2 satisfying (3.7), and

|V (i+1)
2 | ≤ Di|V3|/d
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This implies

di+1 =
e(V1, V

(i+1)
2 )

|V (i+1)
2 |

≥ (1− ai)e(V1, V
(i)
2 )

Di|V3|/d
≥ (1− ai)aidi

d

10k|V3|
e(V1, V

(i)
2 )

≥ (1− ai)aidi
de(V1, V2)

10k|V3|

i−1∏
j=0

(1− aj) = aidi
t− i

t+ 1

de(V1, V2)

10k|V3|
.

Therefore invariant (3.8) holds. This complete the proof of this claim. ■

Through iterative application of this claim, we obtain our desired chain of subsets
V

(t)
2 ⊆ · · · ⊆ V

(1)
2 ⊆ V

(0)
2 . For simplicity of notation, let F = d·e(V1,V2)

10k|V3| . By (3.8), we have

di ≥ d0 · F i

i−1∏
j=0

aj
t− j

t+ 1
= d0 · F i

i−1∏
j=0

t− j

t− j + 1

1

t+ 1

= d0 ·
( F

t+ 1

)i t− i+ 1

t+ 1

(3.1)
≥ d0 · 4i

( t

t+ 1

)t t− i+ 1

t+ 1

≥ d0 · 4ie−1 t− i+ 1

t+ 1
.

Therefore we have
d0
di

≤ e · (t+ 1)

4i(t− i+ 1)
. (3.10)

We now analyze the end results of our iteration, V (t)
2 and dt. Observe that V (t)

2 preserves
a good portion of the edges from V2 to V1 (invariant (3.7)), while having exponentially
large average degree (equation (3.10)). Similar to Claim 3.4.1, we have dt < 2k, which
then implies

d0 ≤ dte · (t+ 1)/4t < 2ke · (t+ 1)/4t < 20(t+ 1).

This contradicts condition (3.3). Therefore we conclude that the iteration must stop
before t steps, resulting in either outcome (I) or outcome (II).

Remark. The contraction rate of V (i)
2 could be shown explicitly in the above proof. Specifi-

cally,

|V (i+1)
2 | ≤ Di|V3|/d ≤ 1

aidi

10k|V3|
d

=
d0

Faidi
|V2|

(3.1)
≤ e · (t+ 1)

4i+1t
|V2|.

This bound confirms our intuition that V (i)
2 shrinks exponentially.

We now come to the last piece of the puzzle: proving the existence of a Θ-graph.
The following lemma, while following the same scheme as in Lemma 9 of Bukh–Jiang,
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presents a different method to embed an arbitrarily long path under the assumption
that no (well-placed) Θ-graphs exist. More details on such distinctions are discussed
after the proof.

Lemma 3.4.4. Let G be a trilayered graph with layers V1, V2, V3 and minimum degree at
least [A : B, d+ k : D], where A,B are real numbers and D is an integer. Suppose B ≥ 5,
and

A ≥ 2k(∆D)D−1, (B − 4)D ≥ 2k. (3.11)

Assume that every vertex in V2 has at most ∆d neighbors in V3. Then there is a Θ-graph in
G[V2, V3], or there is a well-placed Θ-graph in G.

Proof. Assume that neither of the conclusions are true. In this proof, we will utilize this
assumption to embed an arbitrarily long path P in G, contradicting the finiteness of the
graph. P will have the form v0↭ v1↭ · · ·↭ vl, where v1, · · · , vl ∈ V1 and each pair
vi, vi+1 is connected by a path of length 2D alternating between V2 and V3.

To utilize the assumption of no well-placed Θ-graph, we strengthen the statement
by maintaining the following property while building the path:

Definition 3.4.1. A path P is called good if every vertex in V2∩P has at least one neighbor
in V1 \ P .

This property enables us to make arguments of the form “either the path could be
extended, or we can find a well-placed Θ-graph”, as we will see later in the proof.

We start our construction with a random vertex v0 from V1. Inductively, assume that
a good path P = v0↭ v1↭ · · ·↭ vl−1 has been constructed, we wish to extend it to
v0↭ · · ·↭ vl. We make the following observations.

Claim 3.4.3. For all i = 0, · · · , l − 1, vi cannot have k or more neighbors in V2 ∩ P .

Proof of Claim 3.4.3. If vi has at least k neighbors in V2∩P , then we can follow the path
and build a Θ-graph with a chord through vi. This Θ-graph is well-placed since P is a
good path. ■

Claim 3.4.4. Given a good path Q, let u ∈ V2 ∩Q be a vertex adjacent to the last vertex of
Q (note that this last vertex can belong to either V1 or V3). Then u has less than t = ⌈B/2⌉
neighbors in V1 ∩Q.
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Proof of Claim 3.4.4. If u has neighbors vk1 , · · · , vkt , where k1 < k2 < · · · < kt, then the
path vk2 ↭ u and the edge uvk2 form a cycle of length at least

2D(t− 2) + 2 ≥ 2D(B/2− 2) + 2 = D(B − 4) + 2 ≥ 2k.

This cycle, together with the chord uvk3, forms a Θ-graph spanning over V1, V2, V3. More-
over, this Θ-graph is well-placed since Q is a good path, and u is adjacent to vk1 which
is not part of the Θ-graph. This contradicts our assumption. ■

Note that by Claim 3.4.3, there are at least A − k ways to extend vl−1 to another
vertex in V2 \ P , and Claim 3.4.4 ensures that all of these extensions are good. Denote
U0 = N(vl−1) \ P , where N(·) is the usual notation for neighborhood. The following
claim, which is the heart of our embedding scheme, states that a large portion of these
good extensions in U0 can be extended further inductively in a vertex-disjoint manner.

Claim 3.4.5. For i = 0, 1, · · · , D − 1, there exist sets Ui ⊂ V2 such that for each u ∈ Ui,
there exists a path Q(u) from U0 to u of length 2i that alternates between V2 and V3.
Moreover, Q(u) is a good extension of P , and for every pair u, v ∈ Ui, Q(u) and Q(v) are
vertex disjoint. Furthermore,

|Ui| ≥ −3k + A

(
1

8(2k + 1)∆

)i D−1∏
i=1

D − i

i+ 1
.

Proof of Claim 3.4.5. We prove this claim by induction, where the base case with i = 0

is true as stated. Assume the claim is true for i, we want to find Ui+1 by extending paths
from Ui.

For arbitrary u ∈ Ui, let Pu denote the concatenation of paths P and Q(u). By similar
argument as in Claim 3.4.3, we see that u cannot have more than k neighbors in Pu∩V3.
Therefore, u has at least d neighbors in V3 that does not land on Pu. These neighbors
are our candidates for extending Pu, and we filter these candidates with the following
procedure. Define three sets S1, F1 and T , where S1, F1 ⊂ Ui and T ⊂ V3. Intuitively,
we want S1 to be the set of vertices with successful extensions to V3, F1 to be Ui \ S1,
and T to be the set of potential extensions from S1 to V3. Set them to be empty initually,
consider the following procedure.

We claim that when this procedure terminates, |S1| ≥ |Ui|/2. Indeed, if |F1| > |Ui|/2,
then |T | < |S1| d

2k+1
< |Ui|

2
d

2k+1
. Moreover, every vertex u in F1 has at least d neighbors in

V3 \ Pu, which means at least 2kd
2k+1

edges adjacent to u land in T . Therefore,

e(F1, T ) ≥ |F1|
2kd

2k + 1
>

2kd

2k + 1

|Ui|
2

,
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Algorithm 1
1: Pick a vertex u randomly from Ui \ (S1 ∪ F1).
2: Let Mu = (N(u) ∩ V3) \ (T ∪ Pu). If |Mu| ≥ d

2k+1
, then randomly select d

2k+1
vertices

in Mu to put into T , and denote these vertices as Tu. Put u into S1.
3: Otherwise, put u ∈ F1 and move on to the next itration. Terminate this procedure if

S1 ∪ F1 = Ui.

which implies e(F1, T )/|T | > 2k. By Lemma 3.3.1, there exists a Θ-graph in G[V2, V3],
which is a contradiction. Thus |S1| ≥ |Ui|/2.

We extend the previous notations to vertices in T . For v ∈ Tu (as defined in Pro-
cedure 1), let Q(v) be the path Q(u)v, and Pv = Puv. Note that the paths {Q(v)}v∈T
are not necessarily pairwise vertex disjoint, since v could be on the path Q(w) for some
w ∈ Ui, w ̸= u. This issue will be resolved later. For now, we make the following
observation concerning extending vertices in T back to V2.

Observation 3.4.6. For an arbitrary vertex v ∈ T , it has at least D− i neighbors in V2\Pv

or in the last 2k vertices of P . To see that, suppose we call an edge vw where w ∈ Pv ∩ V2

long if the distance between v, w is at least 2k through the path Pv and short otherwise.
If v has a long edge vw, then v cannot have any other neighbors in Pv ∩ V2, for otherwise
there would be a well-placed Θ-graph. Moreover, since |Q(v)∩V2| = i, we see that v has at
most i neighbors on Q(v). Our claim then follows.

Utilizing this observation, we will extend every vertex in S1 greedily, while main-
taining that all extensions land in different vertices in V2. As in procedure 1, we define
sets S2, F2 ⊂ S1, D ⊂ V2, where S2 denotes the set of vertices with successful 2-step
extensions, and F2 = S1 \ S2. D denotes the set of endpoints of successful extensions.
We set them to be empty initially, and consider the following procedure.

Algorithm 2
1: Pick a vertex u arbitrarily from S1 \ (S2 ∪ F2).
2: If there exists v ∈ N(u)∩T and w ∈ N(v)\(Pv∪D), then we can successfully extend

Pu to Puvw. Put u into S2 and put w into D.
3: If such vertices do not exist, put u into F2 and move on to the next itration. Termi-

nate this procedure if S2 ∪ F2 = S1.

Let ϵ = D−i
4(2k+1)∆

. We claim that when this procedure terminates, |S2| ≥ ϵ|S1| − 2k.
To see that, we know every vertex u ∈ F2 cannot be extended, which means all of its
possible extensions land in D or the last 2k vertices of P . If |F2| > (1 − ϵ)S1 + 2k >
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(1 − ϵ)S1, by Procedure 1 and Observation 3.4.6, the number of failed extension must
be at least

|F2| ·
d

2k + 1
· (D − i) ≥ (D − i)(1− ϵ)d

2(2k + 1)
|Ui|.

Since |D| = |S2|, all these failed extensions must land in a set of size less than ϵ|S1|. The
average degree on this set would then be at least

(D − i)(1− ϵ)d

2(2k + 1)
|Ui| ·

1

ϵ|Ui|
> 2(1− ϵ)∆d > ∆d,

which is a contradiction to the assumption that no vertices in V2 has more than ∆d

neighbors in V3. Therefore we have at least |S2| ≥ ϵ|Ui| − 2k successful extensions.

The next step is to filter these extensions such that they are pairwise vertex disjoint.
What we have constructed so far is a set Q of length 2i+2 paths from U0 to D such that
if we choose any two paths p1, p2 from Q, their first 2i vertices would be disjoint, and
their last two vertices would also be disjoint. Therefore every path could only overlap
with at most 2i+2 other paths in Q, which implies there exists a set of pairwise disjoint
paths Q′ such that |Q′| ≥ |Q|/(2i + 2). Let Ui+1 ⊂ D be the set of endpoints of these
paths, we have

|Ui+1| = |Q′| ≥ |Q|/(2i+2) = |S2|/(2i+2) ≥ ϵ

2(i+ 1)
|Ui|−2k ≥ D − i

i+ 1

1

8(2k + 1)∆
|Ui|−2k,

which satisfies the stated bound. All of these extensions are good by Claim 3.4.4. ■

Now from condition (3.11), we see that UD−1 is non-empty. Let Q = v0 ↭ · · ·↭
vl−1 ↭ u be an arbitrary extension with u ∈ UD−1. By Claim 3.4.4, (N(u) ∩ V1) \ Q is
non-empty. Let vl be chosen arbitrarily from this set, and let the new path be Qvl. We
prove one last claim to finish the proof.

Claim 3.4.7. The path Qvl is good.

Proof of Claim 3.4.7. We show that for any w ∈ V2 ∩ Q, w has at most 2t− 2 neighbors
in V1 ∩Qvl. By Claim 3.4.4, w has fewer than t neighbors in Q∩V1 that precede w in Q.
We want to apply the same argument to the reverseal of Qvl.

Consider the sub-path Q′ = vl ↭ w of Q. Since Q is a good path, w can’t have t

or more neighbors in V1 ∩Q. Therefore, assume w has neighbors vk1 , · · · , vkt ∈ V1 ∩Q′,
where vkt = vl and k1 < k2 < · · · < kt. Then the path vkt−1 ↭ w, together with the
edges wvkt−1 forms a cycle of length at least 2k, with chords through v. This Θ-graph is
well-placed since the path Q is good, and vkt−1 ↭ w does not go through vkt = vl, which
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means vertices of this Θ-graph in V2 can use vl to satisfy the well-placed condition. We
conclude that w must have less than t neighbors in Q′ ∩ V1. Since 2t − 2 < B, the path
Qvl is good. ■

Therefore, we can construct an arbitrarily long path in G, which is a contradiction.
We conclude that a (well-placed) Θ-graph must exist.

Remark. This result is stronger than Lemma 9 in Bukh–Jiang, in the sense that Bukh and
Jiang showed how to embed one extension inductively, while we presented a method to
embed multiple vertex-disjoint extensions simultaneously. We also note that |Ui| can be
made arbitrarily large by increasing A, which only affects the magnitude of n. Therefore,
our methods embed many “parallel” paths concurrently.

Utilizing Lemma 3.4.2, 3.4.3 and 3.4.4, we now prove Lemma 3.4.1.

Proof of Lemma 3.4.1. Given a graph G satisfying the conditions in Lemma 3.4.1, we
first apply Lemm 3.4.3 with C = d + k. If the lemma results in outcome (I), then our
claim holds. If the lemma results in outcome (II), then we apply Lemma 3.4.4 on the
resulting trilayered subgraph and our claim holds. This proves Lemma 3.4.1.

We now proceed to prove Theorem 3.2.1.
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3.5 Proof of Theorem 3.2.1

In this section, we prove that under the conditions of Theorem 3.2.1, we have for all i

|Vi+1| ≥ (d2/20k log k)|Vi−1|. (3.12)

We introduce the following auxiliary conditions, which will be proved by induction on
i.

e(Vi, Vi+1) ≥ 2d|Vi|, (3.13)

e(Vi, Vi+1) ≤ 2k|Vi+1|, (3.14)

|Vi+1| ≥ k−1d|Vi|, (3.15)

These inequalities hold for i = 0. Assuming the inductive hypothesis, we know that the
minimum degree in the graph is at least 2d+ 5k2. Therefore

e(Vi, Vi+1) ≥ (2d+ 5k2)|Vi| − e(Vi−1, Vi)
(3.14)
≥ (2d+ 5k2 − 2k)|Vi| ≥ 2d|Vi|

This inequality implies that Vi has average degree at least 2d in G[Vi, Vi+1]. Moreover, if
(3.14) is false, then Vi+1 has average degree at least 2k in G[Vi, Vi+1]. By Corollary 3.3.2,
this leads to a contradiction. Therefore (3.14) is true, and (3.15) is a consequence of
(3.13) and (3.14). This completes the proof for the auxiliary claims.

We now move on to prove (3.12). Assume for the sake of contradiction that (3.12)
is false, we will show that the conditions of Lemma 3.4.1 hold, which then leads to a
contradiction.

Assume (3.1) is false. We have

2d2|Vi−1|
(3.13)
≤ de(Vi−1, Vi) ≤ 40k log k|Vi+1|,

|Vi+1| ≥
d2

20k log k
|Vi−1|.

This contradicts with the assumption that (3.12) is false.

(3.2) follows from the fact that d ≥ (20k)4k
2+2k. We have

6k(log k + 1)2(2∆k)2k−1, ≤ 6k3(2k3/2(20k)2k))2k−1

≤ (20k)4k
2−2k · 6k3 · (2k)3k ≤ 2d ≤ e(Vi, Vi+1)/|Vi|.

Finally, if (3.3) is false, we have

2d|Vi−1|
(3.13)
≤ e(Vi−1, Vi) ≤ 20(log k + 1)|Vi|

(3.15)
≤ 40 log k

k

d
|Vi+1|,

|Vi+1| ≥
d2

20k log k
|Vi−1|.
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This again implies (3.12). Therefore (3.12) hold for all i.

We now conclude the proof of Theorem 3.2.1. If k is even, applying (3.12) k/2 times
results in

|Vk| ≥
dk

(20k log k)k/2
.

If k is odd, applying (3.12) (k − 1)/2 times results in

|Vk| ≥
dk−1

(20k log k)(k−1)/2
|V1| ≥

dk

(20k log k)k/2
.

Since |Vk| < n, we must have d <
√
20k log kn1/k.

3.6 Potential Improvements

This section is dedicated to devoted readers who intend to improve Theorem 3.2.1 using
our methods.

The idea of using Θ-graphs in the BFS approach originated from Pikhurko’s work [47].
The most critical component of this combination is the embedding scheme of a Θ-graph
in specific graph structures. For reference, Pikhurko utilized Lemma 3.3.1, while Bukh
and Jiang and the author utilized different versions of Lemma 3.4.4. In essence, all three
proofs are driven by their respective embedding methods. Therefore, if one intends to
improve the upper bound on ex(n,C2k) following this approach, one shall investigate
potential structures and schemes to embed Θ-graphs.

We investigated the following structure in particular.

Definition 3.6.1. For A,B,C,D ∈ R, we say that a trilayered graph G on vertex sets
V1, V2, V3 has degree [A : B,C : (2 : D)] if there exists a partition of V2 into V B

2 and V C
2 ,

such that the minimum degree from V1 to V2, V B
2 to V1, V2 to V3, V3 to V C

2 , and V3 to V B
2

are at least A,B,C, 2, D, respectively.

This definition is inspired by two observations. First of all, the proof of Lemma 3.4.2
found that if an [A : B,C : D] structure cannot be found, then V2 can be partitioned into
two sets Ṽ2 and V2 \ Ṽ2, such that the former has high density with V3 and the latter has
high density with V1 (see Appendix). Let VC = Ṽ2 and VB = V2 \ Ṽ2, the existence of a
[A : B,C : (2, D)] structure is likely with respect to such graph partitions. Second, using
the ideas in our proof of Lemma 3.4.4 and Bukh and Jiang’s proof of their Lemma 9, we
can prove the following result.

31



Lemma 3.6.1. Under the same constraints on A,B,D as in Lemma 3.4.4, if G is a trylay-
ered graph on V1, V2 = VB ∪ VC , V3 with minimum degree at least [A : B,C : (2, D)], then
there is a Θ-graph in G[V2, V3] or there is a well-placed Θ-graph in G.

Therefore, if one is able to show, under weaker conditions in comparison to Lemma 3.4.1,
that either an [A : B,C : D] structure exists or an [A : B,C : (2 : D)] structure exists,
then one could improve our bound. We were able to prove an analog of Lemma 3.4.2
for the [A : B,C : (2 : D)] structure, but was unable to derive an analog of Lemma 3.4.3.

It is also worth pointing out that the constant factor of the upper bound proved
by this chapter is not fully optimized. In particular, we believe that the bound can
be further improved by constant factors if instead of using the Reduction Lemma, we
employ a modified breadth-first search algorithm (see Bukh–Jiang Section 1) to bound
the maximum degree in our graph. In this chapter, we decided not to present the proof
with a modified BFS since we believe the current proof with Reduction Lemma is cleaner
and more applicable to further problems.

Appendix

Bukh–Jiang’s Proof of Reduction Lemma (slightly modified) Let H be a subgraph
of G that maximizes the ratio e(H)/v(H)1+α/2. By the assumption on e(G), this ratio is
at least cnα/2. Since e(H) ≤ v(H)2/2, it then follows that v(H)1−α/2 ≥ 2cnα/2. Let S be
subset of V (H) consisting of γv(H) vertices of largest degrees. We consider two cases.

Suppose at least e(H)/4 edges of H are incident to vertices in S. Set η = 2γ/α. By
averaging, we can find a set T ⊂ V (H) \ S of ηv(H) elements that is incident to at least
fraction η/(1 − γ) of edges leaving S. Hence, e(S ∪ T ) ≥ ( η

1−γ
)e(H)/4 ≥ ηe(H)/4. Let

H ′ be the subgraph of H induced by S ∪ T . Since

(γ + η)1+α/2 = γ1+α/2(1 + 2/α)1+α/2 ≤ (3/α)1+α/2γ1+α/2

≤ (33/2/α1+α/2)γ1+α/2 ≤ (10/α)γ1+α/2 ≤ γ/2,

we have
e(H ′)

v(H ′)1+α/2
≥ ηe(H)

2γv(H)1+α/2
=

e(H)

αv(H)1+α/2
>

e(H)

v(H)1+α/2
,

contradictory to the choice of H.

Therefore, we may assume that S is incident to fewer than e(H)/4 edges of H. Thus
the minimum degree of a vertex in S is at most e(H)

2|S| = e(H)
2γv(H)

. Removing edges incident

to S from H then leaves a graph H ′ with maximum degree at most e(H)
2γv(H)

(since S
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consists of vertices of highest degrees in H) and at least 3e(H)/4 edges. In particular,
average degree of H ′ is at least 3e(H)/(2v(H)).

Now we remove vertices of degree less than e(H)/(2v(H)) repeatedly to obtain G′.
Since the number of edges removed is less than e(H)/2, G′ would have at least γv(H)

vertices and e(H)/4 edges. Each vertex in this graph has degree between e(H)/2v(H)

and e(H)/2γv(H), and we have e(G′) ≥ e(H)/4 ≥ (c/4)nα/2v(H)1+α/2 ≥ (c/4)v(G)1+α/2.
Finally, since e(H)/v(H) ≥ cnα/2v(H)α ≥ cv(G′)α, we are done.

Bukh–Jiang’s Proof of Lemma 3.4.2 We suppose that alternative (I) does not hold.
Then, by Corollary 3.3.2, the average degree of every subgraph of G[V1, V2] is at most
2k.

Consider the process that aims to construct a subgraph satisfying (II). The process
starts with V ′

1 = V1, V ′
2 = V2 and V ′

3 = V3, and at each step removes one of the vertices
that violate the minimum degree condition on G[V ′

1 , V
′
2 , V

′
3 ]. The process stops when

either no vertices are left, or the minimum degree of G[V ′
1 , V

′
2 , V

′
3 ] is at least [A : B,C :

D]. Since in the latter case we are done, we assume that this process eventually removes
every vertex of G.

Let R be the vertices of V2 that were removed because at the time of removal they
had fewer than C neighbors in V ′

3 . Put

E ′ def
= {uv ∈ E(G) : u ∈ V2, v ∈ V3, and v was removed before u},

S
def
= {v ∈ V2 : v has at least 4k2 neighbors in V1}.

Note that |E ′| ≤ D|V3|. We cannot have |S| ≥ |V1|/k, for otherwise the average degree
of the bipartite graph G[V1, S] would be at least 4k

1+1/k
≥ 2k. So |S| ≤ |V1|/k.

The average degree condition on G[V1, S] implies that

e(V1, S) ≤ k(|V1|+ |S|) ≤ (k + 1)|V1|.

Let u be any vertex in R\S. Since it is connected to at least (d+4k2+C)−4k2 = d+C

vertices of V3, it must be adjacent to at least d edges of E ′. Thus,

|R \ S| ≤ |E ′|/d ≤ D|V3|/d.

Assume that the conclusion (III) does not hold with Ṽ2 = R \ S. Then e(V1, R \
S) < (1 − a)e(V1, V2). Since the total number of edges between V1 and V2 that were
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removed due to the minimal degree conditions on V1 and V2 is at most A|V1| and B|V2|
respectively, we conclude that

e(V1, V2) ≤ e(V1, S) + e(V1, R \ S) + A|V1|+B|V2| (3.16)

< (k + 1)|V1|+ (1− a)e(V1, V2) + A|V1|+B|V2|,

implying that
a · e(V1, V2) < (A+ k + 1)|V1|+B|V2|.

The contradiction with (3.4) completes the proof.
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Chapter 4

Representative Sets Method in Matroid
Theory

4.1 Introduction

Let G = (V,E) be an unweighted, directed graph, and let S, T ⊂ V be sets of terminals.
In the vertex sparsifier problem, our goal is to construct a smaller graph H, called the
vertex sparsifier, that preserves the cut structure of S, T in G. More precisely, H should
include all vertices in S, T , and for all subsets A ⊆ S and B ⊆ T , the size of the min-cut
separating A and B is the same in G and H. Here, we allow the min-cut to contain
vertices from A and B.

A landmark result of Kratsch and Wahlström proved the first bound on the size
of a vertex sparsifier that is polynomial in the number of terminals. When S, T have
size k, the vertex sparsifier has O(k3) vertices. Kratsch and Wahlström’s main insight
is to phrase the problem in terms of constructing representative families on a certain
matroid, after which they can appeal to the rich theory on representative families [42,
45]. Their result, also known as the cut-covering lemma in the areas of fixed-parameter
tractability and kernelization, has led to many new algorithmic developments [32–35].
Nevertheless, despite the recent surge in applications of the cut-covering lemma, the
original bound of O(k3) has yet to be improved.

In this chapter, we observe the ordered version of the representative family method,
and use it to give a sparsifier on O(k2) vertices in directed acyclic graphs. This matches
known lower bounds of Ω(k2). Furthermore, unlike previous versions, our new algo-
rithm runs in linear time in the size of the graph, and computes a cover for all furthest
min-cuts between subsets of the terminals. We expect this may lead to further ap-
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plications in the theory of kernelization. The central method we use is the following
theorem.

Theorem 4.1.1. Suppose F ⊆ P(Fd) for some field F and for all B ∈ F , |B| = s. Let

A = {A ⊆ Fd | |A| ≤ r and ∃B ∈ F s.t. A ⊎B is linearly independent}.

Fix any ordering σ of F , namely F = {B1, B2, · · · , Bn}, and suppose d ≥ r+s. Then there
exists B ⊆ F , B = {Bi1 , Bi2 , · · · , Bim} where i1 < i2 < . . . < im, such that

(a) For all A ∈ A, there exists Bik ∈ B where A ⊎ Bik is independent and for all j ∈
[n], j > ik, A ⊎Bj is dependent. Note that Bj is not necessarily in B.

(b) m ≤
(
d
s

)
, and we can find B algorithmically using O(

(
d
s

)
nsω +

(
d
s

)ω−1
n) field opera-

tions over F (in particular, in time linear in |F|).

Technically, this version is equivalent to the weighted version of the representative
family method (see, e.g., Fomin et al. [21]), as any input with all weights distinct
enforces a corresponding total ordering on the elements1. However, the difference in
focus is significant, as a total element ordering can carry semantic meaning that is
obscured when implemented using weights.

Applying Theorem 4.1.1 to vertex cut sparsifiers, we obtain the main result of this
chapter.

Theorem 4.1.2. Given a directed acyclic graph G = (V,E) with terminal sets S, T of size k,
we can find a vertex cut sparsifier of G of size Θ(k2) algorithmically in time O((m+n)kO(1)).

In order to get Theorem 4.1.2 to run in linear time, two further obstacles need to
be overcome. The first is to compute a representation for the matroids underlying the
result, known as gammoids in time linear in m + n. The usual method for representing
gammoids goes via the class of transversal matroids, however, this requires taking the
inverse of an n×n matrix. Luckily, we observe that an older construction of Mason [43]
can be used to represent gammoids more efficiently over DAGs; see Lemma 4.2.1.

The other obstacle is that the method of Kratsch and Wahlström [35] is inherently
iterative. They use a representative family computation to find essential vertices – i.e.,
vertices that have to be included in the sparsifier if the result is to be correct – then
eliminate one non-essential vertex at a time until all vertices are deemed potentially
essential. Using Theorem 4.1.2 and the topological ordering of a DAG, we show that a

1In the first version of this manuscript, we presented a proof of Theorem 4.1.1 that runs in polynomial
time. It was later pointed out to us that this theorem is equivalent to Theorem 3.7 in [21], which runs
in linear time. We thereby refer the readers to the proof in [21], as our proof shares similar underlying
ideas with theirs.
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single representative family computation lets us find all vertices contained in furthest
min-cuts between subsets of the terminals, thereby removing the need for iteration. In
fact, a cut-covering set for furthest (or, symmetrically, closest) min-cuts was not previ-
ously known.

4.2 Preliminaries

Throughout this chapter, all graphs are directed and unweighted. We begin with stan-
dard terminology on cuts and cut sparsifiers.

Definition 4.2.1 (Vertex Cut). Given a directed unweighted graph G = (V,E) with sets
X, Y ⊆ V , a set C ⊆ V is a vertex cut of (X, Y ) if after removing C from G, there does not
exist a path from a vertex in X to a vertex in Y . We denote the size of a minimum vertex
cut between X, Y in G as mincutG(X, Y ).

Definition 4.2.2 (Vertex Cut Sparsifier). Consider a directed unweighted graph G =

(V,E) with sets S, T ⊆ V . A directed unweighted graph H = (V ′, F ) is a vertex cut
sparsifier of G if

(a) S, T ⊆ V ′.
(b) For all X ⊆ S, Y ⊆ T , mincutG(X, Y ) = mincutH(X, Y ).

The problem we consider in this paper is the minimum size of a vertex sparsifier.

Problem (Minimum Vertex Cut Sparsifier). Given a directed unweighted graph G =

(V,E) with terminal sets S, T ⊆ V , what is the minimum number of vertices in a ver-
tex cut sparsifier of G?

Vertex cut sparsifiers were first introduced by Moitra [44] in the approximation al-
gorithms setting; see also [11, 13, 40]. Recently, they have found applications in fast
graph algorithms, especially in the dynamic setting [10, 12, 15]. For the specific prob-
lem above, Kratsch and Wahlström [35] obtained the bound O(k3), where |S| = |T | = k.
Their application was in the fixed-parameter tractability setting, specifically in con-
structing kernels for cut-based problems. Our proof utilizes similar matroid-theoretic
techniques as theirs, which we introduce next.

Definition 4.2.3 (Matroid). Given a finite ground set U , a set system M = (E, I) where
E ⊆ U, I ⊆ P(E) is called a matroid if

(a) ∅ ∈ I.
(b) For X, Y ⊆ E, if Y ∈ I and X ⊆ Y , then X ∈ I.
(c) If X, Y ∈ I and |X| < |Y |, then there exists y ∈ Y \X such that X ∪ {y} ∈ I.
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Central to our proof is the use of gammoids and their representations.

Definition 4.2.4 (Gammoid). Given a graph G = (V,E) and a vertex subset S, the gam-
moid on S is the matroid M = (V, I) where I contains all subsets T ⊆ V such that there
exist |T | vertex-disjoint paths from S to T in G.

Definition 4.2.5 (Matroid disjoint union). Given two matroids on disjoint ground sets,
their matroid disjoint union is the matroid whose ground set is the union of their ground
sets, and a set is independent if the corresponding part in each matroid is independent.

Definition 4.2.6 (Representable matroid). Given a field F , a matroid M = (E, I) is
representable over F if there exists a matrix A over the field F such that there exists a
bijective mapping from E to the columns of A, where a set S ⊆ E is independent if and
only if its corresponding set of columns of A are linearly independent.

In particular, it is well known in matroid theory that gammoids are representable in
randomized polynomial time; see Marx [42]. However, to control the running time, we
revisit an older representation by Mason [43], and note that it leads to a representation
in near-linear time in |V | + |E| on DAGs. We also note that the disjoint union of two
representable matroids is representable.

Lemma 4.2.1 (Construction of Gammoid Representation on DAGs). Given a directed
acyclic graph G = (V,E), a set S ⊆ V , and ε > 0, with |V | = n, |E| = m and |S| = k,
a representation of the gammoid on S of dimension k over a finite field with entries of
bitlength ℓ = O(k log n + log(1/ε)) can be constructed in randomized time Õ((n +m)kℓ)

with one-sided error at most ε, where Õ hides factors logarithmic in ℓ.

Proof. We review the construction of Mason [43]. Associate a variable xuv to every edge
(u, v) ∈ E, where all variables xuv are formally independent. For two vertices u, v ∈ V ,
define the path polynomial

P (u, v) =
∑

P : u⇝v

∏
(u,v)∈E(P )

xuv

where P ranges over all directed paths from u to v in G. Define the matrix M with rows
indexed by S and columns by V , where for u ∈ S, v ∈ V we have M(u, v) = P (u, v).
Then M is a representation of the gammoid on S.

Indeed, on the one hand let T ⊆ V be a basis of the gammoid. By definition, there
is a vertex-disjoint flow linking S to T . Instantiate the variables xuv by letting xuv = 1

for every edge used in one of these paths, and xuv = 0 otherwise. Under this evaluation
M [S, T ] is a permutation matrix, hence independent, which shows that detM [S, T ] ̸≡ 0.
On the other hand, let T ⊆ V and let C ⊆ V be an (S, T )-min cut, |C| < |T |. Then
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M [S, T ] factors as M [S, T ] = M [S,C] ·M ′[C, T ] for a matrix M ′[C, T ], hence the rank of
M [S, T ] is at most |C|. Here, M ′[C, T ] is defined as M , except that vertices of C have
been turned into sources.

To get a representation over a finite field F, we pick a sufficiently large field F and
replace every variable xuv by a random value from F. For the success probability, note
that any dependent set in M remains dependent after such a replacement. Therefore,
it is enough to consider the probability that detM [S,B] ̸= 0 for every basis B of the
gammoid. For this, we observe that the entries M(u, v) are polynomials of degree at
most n, hence detM [S,B] has degree at most nk. Furthermore, the number of bases is
at most

(
n
k

)
≤ nk. Let F = GF (2ℓ) where 2ℓ > (1/ε)(nk)nk, i.e., ℓ = Θ(k log n+log(1/ε)).

By Schwartz-Zippel, the probability that detM [S,B] = 0 for a given basis B is at most
nk/|F| ≤ εn−k, hence by the union bound the probability that this occurs for at least
one basis B is at most ε. We note that field arithmetic over F can be performed in time
Õ(ℓ).

It remains to evaluate the vectors Rv = (P (s, v))s∈S for v ∈ V quickly. For simplicity,
we assume without loss of generality that the vertices s ∈ S are sources in G; this can
be achieved by introducing a new vertex s′ for every s ∈ S, with a single edge (s′, s),
and replacing s by s′ in S. Note that this does not change the resulting gammoid. Let
V = {v1, . . . , vn} where (v1, . . . , vn) is a topological ordering of G, starting with the
vertices of S; this can be computed in time O(m + n) by standard methods. Note that
P (s, s) = 1 for s ∈ S, hence the vectors Rs, s ∈ S are unit vectors making up the
standard basis for Fk. For all other vertices v ∈ V , note

P (s, v) =
∑

u∈N−(v)

P (s, u)xuv,

where P (s, u) = Ru(s) has already been computed due to the topological ordering.
Hence Rv can be computed using O(kd−(v)) field operations from the previously com-
puted vectors. Performing this across all variables v1, . . . , vn uses O((n + m)k) field
operations, hence the total running time is bounded by Õ((n+m)kℓ), as stated.

Given these definitions, we now apply Theorem 4.1.1 to representable matroids and
obtain the following Theorem, which we will use in our proof.

Theorem 4.2.2 (Algorithmic Skew-Symmetric Bollobás’s Theorem on Representable
Matroids). Consider a representable matroid M = (E, I) of rank r + s. Let A be a family
of sets of size at most r, and let F = {B1, B2, · · · , Bn} be a family of sets of size s such
that for all A ∈ A, exists B ∈ F , A ⊎ B ∈ I. Then there exists B = {Bi1 , · · · , Bim} ⊆ F ,
m ≤

(
r+s
s

)
, such that for all A ∈ A, exists j where A⊎Bij ∈ I and for all k > ij, A⊎Bk /∈ I.

B can be found in time O((m+ n)kO(1)).
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4.3 Vertex Cut Sparsifier for DAGs

In this section, we prove our main result, Theorem 4.1.2. We first borrow the following
key concepts from Kratsch and Wahlström [35].

Definition 4.3.1 (Essential Vertex). A vertex v ∈ V \ (S ∪ T ) is called essential if there
exists X ⊆ S, Y ⊆ T such that v belongs to every minimum vertex cut between X, Y .

Definition 4.3.2 (Neighborhood Closure). For a digraph G = (V,E) and a vertex v ∈ G,
the neighborhood closure operation is defined by removing v from G and adding an edge
from every in-neighbor of v to every out-neighbor of v. The new graph is denoted by clv(G).

Definition 4.3.3 (Closest Set). For sets of vertices X,A ⊆ V , A is closest to X if A is the
unique min-cut between X and A.

We remark that neighborhood closure is exactly what we call vertex elimination,
but we prefer to keep the same terminology from [35]. We introduce the following
definitions to simplify our discussions.

Definition 4.3.4. For sets X ⊆ S, Y ⊆ T , let C be a vertex cut for X, Y . Let G′ be
the subgraph formed by the union of all paths from X to Y . The left-hand side of C,
denotes L(C), is the set of vertices that are still reachable from X in G′ after C is removed.
Similarly, the right-hand side of C, denoted R(C), is the set of vertices that can still reach
Y in G′ after C is removed.

Definition 4.3.5 (Saturation). Let C be a vertex cut for X ⊆ S, Y ⊆ T . For a vertex
v ∈ C, we say that v and C are saturated by X if there exists |C| + 1 paths from X to C

that are vertex disjoint except for two paths that both ends at v. Similarly, v and C are
saturated by Y if there exists |C| + 1 paths from C to Y that are vertex disjoint except for
two paths that both starts at v.

The following three lemmas are stated and proved as Reduction Rule 1, Proposition 1
and Lemma 5 in [35], respectively. Their proofs, as presented in [35] and Chapter 11.6
of [22], are included in the Appendix for completeness.

Lemma 4.3.1 (Closure Lemma). If v ∈ V \ (S ∪ T ) is not an essential vertex, then clv(G)

is a vertex cut sparsifier of G.

Lemma 4.3.2 (Closest Cut Lemma). Let C be a vertex cut for X ⊆ S, Y ⊆ T that is closest
to X or Y , then for all vertices v ∈ C, v and C are saturated by X or Y , respectively.

Lemma 4.3.3 (Essential Vertex Lemma). Let v be an essential vertex with respect to
X ⊆ S, Y ⊆ T . Let C be any minimum vertex cut between X, Y . Then v and C are
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saturated by both X and Y .

Using these results, Kratsch and Wahlström presented an inspired construction of
matroids which, combined with the theory of representative families, resulted in their
O(k3) bound. We now present a modified construction that utilizes skew-symmetry in
Theorem 4.2.2, resulting in Theorem 4.1.2.

Theorem 4.3.4. For a directed acyclic graph G = (V,E) with terminal sets S and T , let
k = |S ∪ T |. Then there exists a set of vertices P of size O(k2) such that for each pair of
X ⊆ S, Y ⊆ T , the min-(X, Y ) cut that is closest to Y is contained in P . This set can be
found in time Õ(nk2ω−1 +mk2), and a sparsifier on P can then be constructed in the same
asymptotic running time.

Proof. Let GR = (V,ER) be the graph G with the direction of all edges reversed. We
make the following modification to our graphs G,GR. For each vertex v ∈ V \ (S ∪ T ),
add a vertex v′ into V and for each directed edge (u, v) ∈ E, add (u, v′) into E. Denote
this new directed graph G′ = (V ′, E ′), and similarly construct G′

R = (V ′, E ′
R). Note

that G′, G′
R are both acyclic. Enumerate V in a reverse topological ordering, namely

V = (v1, v2, · · · , vn) where vi cannot reach any vj for j > i.

Let M1 = (E1, I1) be the gammoid constructed on the graph G and the set of termi-
nals S in G, and let M2 = (E2, I2) be the gammoid constructed on the graph G′

R and
the set of terminals T in G′

R. To distinguish between elements of E1 and E2, we label
vertices in E1 as v1, . . . , vn, v

′
1, . . . , v

′
n, and elements in E2 as v1, . . . , vn, v1

′, . . . , vn
′. For

any set of vertices U ⊆ V , denote the respective sets in E1 and E2 as U1 and U2. Let
M be the disjoint union of matroids M1 and M2, so M is representable and it has rank
O(k).

Observe that for any X ⊆ S, Y ⊆ T , the min-cuts between X and Y in G are the
same as in G′ because the vertex copies v′ we added to G have no outgoing edges.
Therefore, G and G′ have the same set of closest cuts. We now construct families of sets
A,F that satisfy the conditions of Theorem 4.2.2. For a min-cut C between X, Y that is
closest to Y , and a vertex v ∈ C, define

A(C,v) = (S1 \X1 ∪ C1 \ {v}) ∪ (T2 \ Y2 ∪ C2).

Let A consists of A(C,v) for all such cut-vertex pairs. Define

F = {Bv = {v, v′} | v ∈ V }.

We prove the following claim.

41



Claim 4.3.1. For each A = A(C,v), Bv is the unique set in F such that A⊎Bv is independent
in M , and for all u > v in the reverse topological order of V , A ⊎Bu is dependent in M .

Proof of Claim 4.3.1. We first show that A ⊎ Bv is independent. Since M is a disjoint
union matroid, we need to show that (A ∩ E1) ⊎ {v} = S1 \ X1 ∪ C1 is independent in
M1 and (A ∩ E2) ⊎ {v′} = T2 \ Y2 ∪ C2 ∪ {v′} is independent in M2.

Since both M1 and M2 are gammoids, we need to show existence of vertex disjoint
paths from S1 to S1 \ X1 ∪ C1. First note that singleton paths can cover all vertices in
S1 \X1. Since C1 is a min-cut between X1 and Y1, by duality there exists vertex disjoint
paths from X1 to C1. Therefore S1 \X1 ∪ C1 is independent in M1. Similarly, singleton
paths can cover all vertices in T2 \ Y2. It suffices for us to show the existence of vertex
disjoint paths from Y2 to C2 ∪ {v′}.

By Lemma 4.3.2, there exists |C2| + 1 paths from Y2 to C2 that are vertex disjoint
except for two paths that both ends at v. Therefore, we can redirect one of these two
paths to end at v′, and we obtain |C2|+1 vertex disjoint paths from Y2 to C2∪{v′}. This
proves independence.

Now fix u > v in the reverse topological ordering, so that there does not exist a
path from v to u. We want to show that either (A ∩ E1) ⊎ {u} is dependent in M1, or
(A ∩ E2) ⊎ {u′} is dependent in M2. Consider four possible cases:

• u is not on any path from X to Y . Assume for the sake of contradiction that both
(A∩E1)⊎ {u} and (A∩E2)⊎ {u′} are independent. Then there must exist a path
from X to u and a path from u to Y , which forms a path from X to Y through u

(since G is acyclic), contradiction.
• u ∈ L(v) (see Definition 4.3.4). Then any path from u to Y (or from Y to u in

GR) must intersect with C, which means there does not exist vertex disjoint paths
from Y to C ∪ {u} in GR. Therefore (A ∩ E2) ⊎ {u′} is dependent.

• u ∈ R(v). Then any path from X to u must intersect C. Assume for the sake of
contradiction that (A ∩ E1) ⊎ {u} is independent, then there exists vertex disjoint
paths from X to C \ {v} ∪ {u}, which means there is a path from X to u that goes
through v. However, since u > v in the topological ordering, there does not exist
paths from v to u. This is a contradiction, so (A ∩ E1) ⊎ {u} is dependent.

• u ∈ C. Then u ∈ (A ∩ E2), which implies (A ∩ E2) ⊎ {u} is dependent.

This completes the proof. ■

Let P be the collection of vertices that Theorem 4.2.2 finds. Then by the above claim,
for each pair of X ⊆ S, Y ⊆ T and their min-cut C closest to Y , all vertices in C must be
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in P . Note that this also implies that all essential vertices are in P . For the final running
time, note that computing the gammoids takes time Õ((m+n)k2) by Lemma 4.2.1 with
ε = 1/nO(1), and computing the representative sets takes time Õ(nk2ω−1) by taking d = k

and s = 2 in Theorem 4.1.1.

To construct the final sparsifier H on P , for each vertex u ∈ P , we run a depth-first
search starting at u on the graph Gu, defined to be G minus the out-edges of vertices in
P \{u}. For each vertex v ∈ P \{u} that is reachable from u in Gu, we add an edge (u, v)

to H. Note that this procedure returns the same graph H as the one that sequentially
applies Lemma 4.3.1 on all vertices not in P , but achieves a shorter runtime of O(k2m).
To see the equivalence, observe that in both cases, there is an edge (u, v) in the final
sparsifier if and only if there is a path from u to v in G whose internal vertices are
disjoint from P . We conclude that the output graph H is a valid sparsifier.

We make two remarks about this proof. First of all, we never explicitly compute the
sets A(C,v). They are used only to prove the existence of a vertex cut sparsifier. More im-
portantly, the critical difference between our proof and Kratsch and Wahlström’s proof
is that our proof gives an asymmetrical construction. Kratsch and Wahlström utilized
the property that essential vertices can be saturated from both sides (see Lemma 4.3.3)
to give a symmetrical construction using three matroids, while we use the topological
ordering on DAGs to give a construction that only requires one side of saturation.

We now present tight lower bound constructions in the following section.

4.4 Lower Bound Constructions

In this section we present two constructions that have Ω(k2) essential vertices, which
implies that their vertex cut sparsifiers must have size at least Ω(k2). The first construc-
tion is presented by Kratsch and Wahlström in [35].

Construction 4.4.1. Let S and T be two vertex sets of size 2n. Enumerate them as

S = {v1, v′1, v2, v′2, · · · , vn, v′n}, T = {u1, u
′
1, u2, u

′
2, · · · , un, u

′
n}.

For each i, j ∈ [n], create a vertex wi,j and add edges from vi, v
′
i to wi,j, and from wi,j to

uj, u
′
j. Then wi,j is an essential vertex with respect to X = {vi, v′i} and Y = {uj, u

′
j}.

The second construction is a variant of a grid. Similar constructions are present in
many related works; see, for example, [36].

Construction 4.4.2. Consider the following grid of vertices in Figure 4.1.
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t0,1 t0,2 t0,n−1 t0,n

t1,0 t1,1 t1,2 t1,n−1 t1,n t1,n+1

tn,0 tn,1 tn,2 tn,n−1 tn,n tn,n+1

tn+1,1 tn+1,2

tn+1,n−1

tn+1,n tn+1,n+1

Figure 4.1: Grid construction

Let S and T be the boundary vertices marked as red, namely

S = T = {t0,1, · · · , t0,n, t1,0, · · · , tn,0, tn+1,1, · · · , tn+1,n, t1,n+1, · · · , tn,n+1, tn+1,n+1}.

Formally, the grid is constructed by adding the following edges.

(a) For each row i ∈ [n]. add horizontal edges from left to right between consecutive
vertices from ti,0 to ti,n+1. Note that we exclude the top and bottom rows of terminals.

(b) For each column i ∈ [n], add vertical edges from top to bottom between consecu-
tive vertices from t0,i to tn+1,i. Note that we exclude the left and right columns of
terminals.

(c) For each vertex vi,j where i, j ≤ n, add a diagonal edge going to the immediate vertex
in the bottom right direction of vi,j.

We show that the vertices v1,1, · · · , vn,n are all essential. For each i = 1, · · · , n, consider

X = {t1,0, · · · , tn,0, t0,1, · · · , t0,i, tn+1,1, · · · , tn+1,i}, Y = T \X.

In other words, we partition the sets of terminals into two sets, namely the left and right
sides of the ith column. Observe that the column C = {v1,i, · · · , vn,i} is a min-cut for X, Y .
Moreover, every vertex v ∈ C is essential with respect to X, Y . Applying this argument to
all columns, we see that all vertices v1,1, · · · , vn,n are essential.

These two constructions exhibit a dichotomy. Call a min-cut C between X, Y essen-
tial if exists v ∈ C that is essential with respect to X, Y . Construction 4.4.1 demonstrate
that a directed acyclic graph could have O(k2) essential cuts, each containing O(1) es-
sential vertices. On the other hand, Construction 4.4.2 gives a directed acyclic graph
with O(k) essential cuts, each of size O(k). We do not observe any construction of
directed graphs that falls outside of these two cases.
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4.5 Conclusions

After the presented results were derived, the authors made subsequent attempts to im-
prove the bound over general directed graphs. While we have found evidence suggest-
ing that O(k2) is the correct bound in general directed graphs, we were not able to find
a complete proof.
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Appendix

Proof of Lemma 4.3.1

Lemma. If v ∈ V \ (S ∪ T ) is not an essential vertex, then clv(G) is a vertex cut sparsifier
of G.

Proof. Let H = clv(G), it suffices for us to show that for all X ⊆ S, Y ⊆ T ,

mincutG(X, Y ) = mincutH(X, Y ).

We first show mincutG(X, Y ) ≤ mincutH(X, Y ). Let C be a min-cut between X, Y in H,
we show that C is a valid vertex cut in G. Suppose not, then there exists a path P in G

from X to Y that does not intersect with C. If v /∈ P , then P is also a path in H, which
contradicts the fact that C is a cut. If v ∈ P , let u and w be v’s predecessor and successor
in P . According to the closure operation on v, there is an edge uw in H. Therefore we
again have a path from X to Y in H not intersecting C, contradiction.

Next we show mincutG(X, Y ) ≥ mincutH(X, Y ). Since v is not essential, there exists
a min-cut C between X, Y such that v /∈ C. We show that C is a cut in H. Suppose
not, then there exists a path P in H from X to Y not crossing C. For every edge uw on
P that is created by the closure operation, replace it by the path u, v, w and denote the
new walk P ′. After truncating all the cycles of P ′, we obtain a path from X to Y in G

not crossing C, contradiction. We conclude that mincutG(X, Y ) = mincutH(X, Y ).

Proof of Lemma 4.3.2

Lemma. Let C be a vertex cut for X ⊆ S, Y ⊆ T that is closest to X or Y , then for all
vertices v ∈ C, v and C are saturated by X or Y , respectively.

Proof. We prove this lemma for cuts closest to X, as the other case is symmetrical.
Assume for the sake of contradiction there exists v ∈ C such that v and C is not saturated
by X. Add a sink-only copy of v into our digraph G and call the new graph G′, then by
duality there must exists a cut C ′ of size |C| between X and C ∪ {v′} in G′. We now
consider a few cases.

First note that we can’t have v, v′ both in C ′, as otherwise C ′\{v′} would be a smaller
(X, Y ) cut in G. Now if v ∈ C ′ and v′ /∈ C ′, then by duality there is a path from X to v

that does not intersect c′ \ {v}, which can be redirected to v′, contradicting the fact that
C ′ is a cut. Similarly, if v′ ∈ C ′ and v /∈ C we have a contradiciton. Therefore v, v′ /∈ C ′,
which implies C is not the unique (X,C) min-cut, contradiction.
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Proof of Lemma 4.3.3

Lemma. Let v be an essential vertex with respect to X ⊆ S, Y ⊆ T . Let C be any minimum
vertex cut between X, Y . Then v and C are saturated by both X and Y .

Proof. We slightly modify our graph. Add a vertex v′ to G, and add edges such that
v′ has the same in-neighbors and out-neighbors as v. Denote the new graph as G′, we
show that C ′ = C ∪{v′} is a min-cut between X, Y in G′. This lemma then follows from
Menger’s Theorem.

Assume for the sake of contradiction that C ′ is not a min-cut between X, Y , and let
D be a min-cut between X, Y where |D| < |C ′| = |C|+ 1. We consider a few cases.

(a) v ∈ D and v′ /∈ D. Since D is a min-cut, by Menger’s theorem there exists a path
P from X to Y such P ∩ D = {v}. If we replace v by v′ in P , we obtain a valid
path P ′ from X to Y that does not cross D, which is a contradiction to the fact
that D is a cut.

(b) v′ ∈ D and v /∈ D. The same argument from the previous case works.
(c) v, v′ /∈ D. Then D is a valid cut in G, and |D| ≤ |C|. Therefore D is a min-cut in

G that does not contain v, which is a contradiction.
(d) v, v′ ∈ D. Then consider D′ = D \ {v′}. D′ is a valid cut in G, and |D′| ≤ |C| − 1,

which contradicts the fact that C is a min-cut in G.

Therefore we conclude that D is a min-cut in G′, which completes the proof.
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