Logical Computation on QLDPC Codes through Surgery

With Case Study on Bivariate Bicycle codes

Andrew Cross, Zhiyang He (Sunny), Tomas Jochym-O'Connor, Patrick Rall, Esha Swaroop, Dominic Williamson, Theodore Yoder

Outline

- Background and Motivation
 - $\circ \quad Quantum \ LDPC \ Codes$
 - Code Surgery Methods
- Auxiliary Graph Surgery on QLDPC Codes
 - Graph Desiderata
 - Universal Adapter for Joint-measurements
- Case Study: [[144,12,12]] Bivariate bicyclic code

Basics of QEC

Quantum error correction is a fundamental building block of large-scale quantum computation.

Basics of QEC

Quantum error correction is a fundamental building block of large-scale quantum computation.

One of the most promising codes: Surface Code.

- 1. Built on a 2D lattice of qubits.
- 2. Parameters $[n = 2L^2, k = 1, d = L]$.
- 3. Experimental demonstration of subthreshold scaling by Google*.

Challenge:

1. Significant space overhead (~1000x)!

Quantum LDPC Codes: the Tradeoff

Quantum Low-Density Parity-Check (LDPC) Codes: stabilizers of O(1) weight, qubits in O(1) stabilizers. Better encoding rate than surface code!

Quantum LDPC Codes: the Tradeoff

Quantum Low-Density Parity-Check (LDPC) Codes: stabilizers of O(1) weight, qubits in O(1) stabilizers. Better encoding rate than surface code!

Practically: many codes with nice parameters, such as the quasi-cyclic lifted product codes and IBM's [n = 144, k = 12, d = 12] Bivariate Bicycle Code.*

Theoretically: Asymptotically good codes with $k, d = O(n).^{**}$

B) Tanner Graph of the [[144,12,12]] Bivariate Bicycle Code

^{*} High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]

^{**} Asymptotically Good Quantum and Locally Testable Classical LDPC Codes [Panteleev Kalachev 2021]

QLDPC codes could be >10x more space-efficient than surface code. However,

how do we compute on the logical qubits?

QLDPC codes could be >10x more space-efficient than surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical computation that are:

1. Fault-tolerant;

GPT4 Impression of "Quantum Hardware based on QLDPC codes".

QLDPC codes could be >10x more space-efficient than surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical computation that are:

- 1. Fault-tolerant;
- 2. Addressable: capable of addressing subsets of logical qubits in multi-qubit codeblocks;

GPT4 Impression of "Quantum Hardware based on QLDPC codes".

QLDPC codes could be >10x more space-efficient than surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical computation that are:

- 1. Fault-tolerant;
- 2. Addressable: capable of addressing subsets of logical qubits in multi-qubit codeblocks;
- 3. Universal;

GPT4 Impression of "Quantum Hardware based on QLDPC codes".

QLDPC codes could be >10x more space-efficient than surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical computation that are:

- 1. Fault-tolerant;
- 2. Addressable: capable of addressing subsets of logical qubits in multi-qubit codeblocks;
- 3. Universal;
- 4. Low cost in space and time.

GPT4 Impression of "Quantum Hardware based on QLDPC codes".

QLDPC codes could be >10x more space-efficient than surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical computation that are:

- 1. Fault-tolerant;
- 2. Addressable: capable of addressing subsets of logical qubits in multi-qubit codeblocks;
- 3. Universal;
- 4. Low cost in space and time.

This is the central problem in the study of QLDPC codes.

GPT4 Impression of "Quantum Hardware based on QLDPC codes".

Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable, universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes. Andrew Cross, **Zhiyang He**, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators. Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.Esha Swaroop, Tomas Jochym-O'Connor, Theodore Yoder. 2410.03628

Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable, universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes. Andrew Cross, **Zhiyang He**, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators. Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes. Esha Swaroop, Tomas Jochym-O'Connor, Theodore Yoder. 2410.03628

Other related works: 2407.09423 (Cowtan), 2407.18490 (Xu et al.), 2408.01339 (Zhang, Li), 2410.02753 (Ide et al.).

Outline

- Background and Motivation
 - QLDPC Codes
 - Code Surgery Methods
- Auxiliary Graph Surgery on QLDPC Codes
 - Graph Desiderata
 - Universal Adapter for Joint-measurements
- Case Study: [[144,12,12]] Bivariate bicyclic code

Logical Measurement and Lattice Surgery

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation. Logical measurements on surface codes: lattice surgery.

Logical Measurement and Lattice Surgery

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation. Logical measurements on surface codes: lattice surgery.

Logical Measurement and Lattice Surgery

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation. Logical measurements on surface codes: lattice surgery.

Product of red X-checks = $X_L \otimes X_L$ – obtain logical measurement result by measuring new stabilizers.

* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020]. 5

Tanner graph of code

Shorthand form

Problem: merged code has lower distance, less fault-tolerant.

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.

Advantage: applicable to any QLDPC code, Issue: space overhead ~ O(d²), similar to surface code!

Outline

- Background and Motivation
 - Quantum LDPC Codes
 - Code Surgery Methods
- Auxiliary Graph Surgery on QLDPC Codes
 - Graph Desiderata
 - Universal Adapter for Joint-measurements
- Case Study: [[144,12,12]] Bivariate bicyclic code

New Approach: Auxiliary Graph Surgery

New Approach: Auxiliary Graph Surgery

Ģ

1. Build a customized graph $G = (\mathcal{V}, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .

New Approach: Auxiliary Graph Surgery

- 1. Build a customized graph $G = (V, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .
- 2. One new \mathbb{Z} check for every vertex in \mathcal{P} .

- 1. Build a customized graph $G = (V, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .
- 2. One new \mathbb{Z} check for every vertex in \mathcal{P} .
- 3. One new ancilla qubit for every edge in $\boldsymbol{\mathcal{E}}$.

- 1. Build a customized graph $G = (V, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .
- 2. One new \mathbb{Z} check for every vertex in \mathcal{P} .
- 3. One new ancilla qubit for every edge in $\boldsymbol{\mathcal{E}}$.
- 4. Connect $\boldsymbol{\mathcal{E}}$ qubits to $\overline{\mathbf{X}}$ checks on $\boldsymbol{\mathcal{L}}$.

- 1. Build a customized graph $G = (V, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .
- 2. One new \mathbb{Z} check for every vertex in \mathcal{P} .
- 3. One new ancilla qubit for every edge in $\boldsymbol{\mathcal{E}}$.
- 4. Connect $\boldsymbol{\mathcal{E}}$ qubits to $\overline{\mathbf{X}}$ checks on $\boldsymbol{\mathcal{L}}$.
- 5. Pick a cycle basis **C** of G. For each cycle basis element, introduce an X check.

- 1. Build a customized graph $G = (V, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .
- 2. One new \mathbb{Z} check for every vertex in \mathcal{P} .
- 3. One new ancilla qubit for every edge in $\boldsymbol{\mathcal{E}}$.
- 4. Connect $\boldsymbol{\mathcal{E}}$ qubits to $\overline{\mathbf{X}}$ checks on $\boldsymbol{\mathcal{L}}$.
- 5. Pick a cycle basis **C** of G. For each cycle basis element, introduce an X check.
- 6. Product of new Z checks = Z logical operator

- 1. Build a customized graph $G = (V, \mathcal{E})$, with one vertex per qubit in \mathcal{L} .
- 2. One new \mathbb{Z} check for every vertex in \mathcal{V} .
- 3. One new ancilla qubit for every edge in $\boldsymbol{\mathcal{E}}$.
- 4. Connect $\boldsymbol{\mathcal{E}}$ qubits to X checks on $\boldsymbol{\mathcal{L}}$.
- 5. Pick a cycle basis **C** of G. For each cycle basis element, introduce an X check.
- 6. Product of new Z checks = Z logical operator

OK... what about code distance? \bigvee

Let $\boldsymbol{\rho}$ be another Z operator, $\boldsymbol{\mathcal{U}}$ be a set of ancilla checks,

Let $\boldsymbol{\rho}$ be another Z operator, $\boldsymbol{\mathcal{U}}$ be a set of ancilla checks,

 $\boldsymbol{\varrho}' = \boldsymbol{\varrho} \times \boldsymbol{\mathcal{U}} \mathbf{G}^{\mathsf{T}}$

Let $\boldsymbol{\rho}$ be another Z operator, $\boldsymbol{\mathcal{U}}$ be a set of ancilla checks,

 $\boldsymbol{\varrho}' = \boldsymbol{\varrho} \times \boldsymbol{\mathcal{U}} \mathbf{G}^{\mathsf{T}}$

Issue: \mathcal{P}' may have lower weight than $\mathcal{P} \rightarrow$ merged code has lower distance!

Let $\boldsymbol{\varrho}$ be another Z operator, $\boldsymbol{\mathcal{U}}$ be a set of ancilla checks,

 $\boldsymbol{\varrho}' = \boldsymbol{\varrho} \times \boldsymbol{\mathcal{U}} \mathbf{G}^{\mathsf{T}}$

Issue: \mathcal{P}' may have lower weight than $\mathcal{P} \to$ merged code has lower distance!

Solution: if $\boldsymbol{\mathcal{G}}$ is expanding (large Cheeger constant), then $\boldsymbol{\mathcal{U}}$ has large support $\boldsymbol{\mathcal{U}}\boldsymbol{\mathrm{G}}^{\mathsf{T}}$ in $\boldsymbol{\mathcal{E}}$.

Let $\boldsymbol{\rho}$ be another Z operator, $\boldsymbol{\mathcal{U}}$ be a set of ancilla checks, $\boldsymbol{\rho}' = \boldsymbol{\rho} \times \boldsymbol{\mathcal{U}} \mathbf{G}^{\mathsf{T}}$

Issue: \mathcal{P}' may have lower weight than $\mathcal{P} \to$ merged code has lower distance! Solution: if \mathcal{G} is expanding (large Cheeger constant), then \mathcal{U} has large support $\mathcal{U}G^{\mathsf{T}}$ in \mathcal{E} .

Other ways to reduce distance? Not if we measure the cycles **C**.

Outline

- Background and Motivation
 - Quantum LDPC Codes
 - Code Surgery Methods
- Auxiliary Graph Surgery on QLDPC Codes
 - Graph Desiderata
 - Universal Adapter for Joint-measurements
- Case Study: [[144,12,12]] Bivariate bicyclic code

We want:

1. Code should preserve distance of original code.

Graph ${\boldsymbol{\mathcal{G}}}$ should have the following properties:

1. **G** is expanding;

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph ${\boldsymbol{\mathcal{G}}}$ should have the following properties:

1. **G** is expanding;

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph ${\boldsymbol{\mathcal{G}}}$ should have the following properties:

1. **G** is expanding;

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph ${\boldsymbol{\mathcal{G}}}$ should have the following properties:

- 1. **G** is expanding;
- 2. All vertices have O(1) degree.

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph ${\boldsymbol{\mathcal{G}}}$ should have the following properties:

- 1. **G** is expanding;
- 2. All vertices have O(1) degree.

Ingredient #1: choose a randomly constructed constant-degree expander graph.

* stick figure credit: xkcd.com 17

M deforms the original X stabilizers to edge qubits $\boldsymbol{\mathcal{E}}$.

M deforms the original X stabilizers to edge qubits $\boldsymbol{\mathcal{E}}$.

The original X stabilizers overlap \mathcal{L} on an even number of qubits.

M deforms the original X stabilizers to edge qubits $\boldsymbol{\mathcal{E}}$.

The original X stabilizers overlap \mathcal{L} on an even number of qubits.

 $\Leftrightarrow \text{ original X stabilizers anti-commute with an} \\ \text{even number of new vertex Z stabilizers } \textit{U}.$

M deforms the original X stabilizers to edge qubits $\boldsymbol{\mathcal{E}}$.

The original X stabilizers overlap \mathcal{L} on an even number of qubits.

M is just a way to break up the even sized set of vertices \rightarrow pairs of vertices i.e. a *matching* on this graph

M deforms the original X stabilizers to edge qubits $\boldsymbol{\mathcal{E}}$.

The original X stabilizers overlap \mathcal{L} on an even number of qubits.

M is just a way to break up the even sized set of vertices \rightarrow pairs of vertices i.e. a *matching* on this graph

length of matching

- = # of edges in this path b/w paired vertices
- = # of extra qubits supp. deformed X stabilizers

M deforms the original X stabilizers to edge qubits **E**.

The original X stabilizers overlap \mathcal{L} on an even number of qubits.

M is just a way to break up the even sized set of vertices \rightarrow pairs of vertices i.e. a *matching* on this graph

length of matching

- = # of edges in this path b/w paired vertices
- = # of extra qubits supp. deformed X stabilizers

We want:

- 1. Code should preserve distance of original code.
- 2. Merged code should be LDPC at all stages

Graph ${\boldsymbol{\mathsf{G}}}$ should have the following properties:

- 1. **G** is expanding;
- 2. All vertices have O(1) degree
- 3. Short perfect matchings on **G** (For original X checks)

We want:

- 1. Code should preserve distance of original code.
- 2. Merged code should be LDPC at all stages

Graph ${\boldsymbol{\mathcal{G}}}$ should have the following properties:

- 1. **G** is expanding;
- 2. All vertices have O(1) degree
- 3. Short perfect matchings on G (For original X checks)

N corresponds to cycles in the graph G.

N corresponds to cycles in the graph G.

To ensure N is sparse,

N corresponds to cycles in the graph G.

To ensure N is sparse,

N corresponds to cycles in the graph G.

To ensure N is sparse,

• Each edge isn't in too many cycles

N corresponds to cycles in the graph G.

To ensure N is sparse,

- Each edge isn't in too many cycles
- Each cycle* isn't too long.

*element of the cycle basis

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

A cycle basis to begin with [Freedman Hastings 2020]

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

A cycle basis to begin with [Freedman Hastings 2020]

Cycles = X-checks Edges = qubits Input: graph **G** with O(1) vertex degree Output: a cycle basis s.t. each cycle overlaps with at most O(log³ (|V|)) cycles.

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

Desiderata 4: Sparse cycle basis for graph **G**

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

Desiderata 4: Sparse cycle basis for graph **G**

Ģ

Ensuring the cycle basis of graph is sparse :

• Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of "decongesting" cycles in a graph

Also "cellulate" long cycles into smaller cycles

• Each cycle basis element has O(1) edges

Graph Desiderata

We want:

- 1. Code should preserve distance of original code.
- 2. Merged code should be LDPC at all stages

Graph $\boldsymbol{\mathcal{G}}$ should have the following properties:

- 1. **G** is expanding; \checkmark
- 2. All vertices have O(1) degree \checkmark
- 3. Short perfect matchings on 𝔅 (For original X checks) ✓
 & each edge is in O(1) matchings. ✓
- 4. **G** has a sparse cycle basis. \checkmark

Overall protocol for auxiliary graph qLDPC surgery

(i) initialize

Overall protocol for auxiliary graph qLDPC surgery

(i) initialize

(ii) merge step

Overall protocol for auxiliary graph qLDPC surgery

(i) initialize

(ii) merge step

(iii) split step

In summary: auxiliary graph qLDPC surgery

✓ Applicable to any quantum LDPC code!

In summary: auxiliary graph qLDPC surgery

✓ Applicable to any quantum LDPC code!

Qubit overhead of scheme: O(d log³ (d))

~ O(d) in distance d, upto polylog

In summary: auxiliary graph qLDPC surgery

✓ Applicable to any quantum LDPC code!

Qubit overhead of scheme: O(d log³ (d))

~ O(d) in distance d, upto polylog

 \Rightarrow Significant improvement in overhead from previous scheme for arbitrary quantum LDPC codes, O(d²)

Construct a large **auxiliary graph** on the **entire logical**.

Construct a large **auxiliary graph** on the **entire logical**.

This would mean exponentially many auxiliary graphs for each of the ~ 4^k logical operators!

Construct a large **auxiliary graph** on the **entire logical**.

This would mean exponentially many auxiliary graphs for each of the ~ 4^k logical operators!

Can we break up the problem?

Outline

- Background and Motivation
 - Quantum LDPC Codes
 - Code Surgery Methods
- Auxiliary Graph Surgery on QLDPC Codes
 - Graph Desiderata

• Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals ?

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

~ needs only d extra edges

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

~ needs only d extra edges = d extra qubits

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

~ needs only d extra edges = d extra qubits

New cycles are at most length 8

Is there a way to **connect** graphs constructed to measure **individual** Pauli logicals (**efficiently**)?

~ needs only d extra edges = d extra qubits

New cycles are at most length 8 = new X stabilizers are at most weight 8

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

SkipTree(G) = T, P

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

SkipTree(G) = T, P

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

Significance : These can be arbitrary* logical operators in the LDPC code, they could belong to the same or different codeblocks, or even different quantum codes

A "Universal" way to connect between any two logical operators in quantum LDPC codes

Universal adapter: Connecting different qLDPC codes

- Arbitrary joint-measurements in the same or different codeblocks
- multi-code architectures...

Can be useful for teleportation, transversal gates, magic state factory, code-switching...

Can leverage known symmetries in codes, and implement these gates on logical qubits of other codes.

In Summary

- Addressable gates for multi-qubit code blocks
- A "universal" scheme applicable to arbitrary quantum LDPC codes
- Space overhead is only ~linear which is a quadratic improvement over previous schemes; the LDPC overhead advantage is now beginning to show even for logical gate schemes.
- Can connect arbitrary codes for multi-code architectures with just ~d extra qubits allowing one to leverage unique advantages of different codes, while keeping architecture LDPC.

Outline

- Background and Motivation
 - Quantum LDPC Codes
 - Code Surgery Methods
- Auxiliary Graph Surgery on QLDPC Codes
 - Graph Desiderata
 - Universal Adapter for Joint-measurements
- Case Study: [[144,12,12]] Bivariate bicyclic code

Case Study: [[144, 12, 12]] Bivariate Bicycle Code

Case Study: [[144, 12, 12]] Bivariate Bicycle Code

Previous Proposal for Logical Computation

Previous Proposal for Logical Computation

Uses 1380 ancilla qubits.

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]

Previous Proposal for Logical Computation

Uses 1380 ancilla qubits.

Teleport logical information into a surface code patch to do computation.

New Proposal for Logical Computation

New Proposal for Logical Computation

Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.

New Proposal for Logical Computation

Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.

Automorphism gates + logical measurement = Full logical Clifford group!

Promising numerical benchmarking.

Logical Computation on QLDPC Codes through Surgery

With Case Study on Bivariate Bicycle codes

Andrew Cross, Zhiyang He (Sunny), Tomas Jochym-O'Connor, Patrick Rall, Esha Swaroop, Dominic Williamson, Theodore Yoder

The End

