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Basics of QEC

Quantum error correction is a fundamental building 
block of large-scale quantum computation.
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Basics of QEC

* Quantum error correction below the surface code threshold [Google and collaborators  (2024)]

Quantum error correction is a fundamental building 
block of large-scale quantum computation.

One of the most promising codes: Surface Code.
1. Built on a 2D lattice of qubits.
2. Parameters [n= 2L2, k = 1, d = L].
3. Experimental demonstration of subthreshold 

scaling by Google*.
Challenge: 

1. Significant space overhead (~1000x)!

** Surface code figure credit to Niel de Beaudrap. 1



Quantum LDPC Codes: the Tradeoff

Quantum Low-Density Parity-Check (LDPC) Codes: 
stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!
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Quantum LDPC Codes: the Tradeoff

Quantum Low-Density Parity-Check (LDPC) Codes: 
stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!

Practically: many codes with nice parameters, such 
as the quasi-cyclic lifted product codes and IBM’s 
[n = 144, k = 12, d = 12] Bivariate Bicycle Code.*

Theoretically: Asymptotically good codes with 
k, d = O(n).**

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]
** Asymptotically Good Quantum and Locally Testable Classical LDPC Codes [Panteleev Kalachev 2021] 2



The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than 
surface code. However, 

how do we compute on the logical qubits?

3



The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than 
surface code. However, 

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical 
computation that are:

1. Fault-tolerant;

GPT4 Impression of 
“Quantum Hardware based on QLDPC codes”.

3



The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than 
surface code. However, 

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical 
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of 

logical qubits in multi-qubit codeblocks;

GPT4 Impression of 
“Quantum Hardware based on QLDPC codes”.

3



The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than 
surface code. However, 

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical 
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of  

logical qubits in multi-qubit codeblocks;
3. Universal;

GPT4 Impression of 
“Quantum Hardware based on QLDPC codes”.

3



The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than 
surface code. However, 

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical 
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of  

logical qubits in multi-qubit codeblocks;
3. Universal;
4. Low cost in space and time.

GPT4 Impression of 
“Quantum Hardware based on QLDPC codes”.

3



The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than 
surface code. However, 

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical 
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of  

logical qubits in multi-qubit codeblocks;
3. Universal;
4. Low cost in space and time.

This is the central problem in the study of QLDPC codes. GPT4 Impression of 
“Quantum Hardware based on QLDPC codes”.
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Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable, 
universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes.
Andrew Cross, Zhiyang He, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators.
Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.
Esha Swaroop, Tomas Jochym-O’Connor, Theodore Yoder. 2410.03628
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Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable, 
universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes.
Andrew Cross, Zhiyang He, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators.
Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.
Esha Swaroop, Tomas Jochym-O’Connor, Theodore Yoder. 2410.03628

Other related works: 2407.09423 (Cowtan), 2407.18490 (Xu et al.), 2408.01339 (Zhang, Li), 
2410.02753 (Ide et al.).
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Logical Measurement and Lattice Surgery
Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.

Logical measurements on surface codes: lattice surgery.
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Logical Measurement and Lattice Surgery

* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020].

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.
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Logical Measurement and Lattice Surgery

* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020].

Product of red X-checks = XL ⛒ XL – obtain logical measurement result by measuring new stabilizers.

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.
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Quantum LDPC Surgery
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Quantum LDPC Surgery

Shorthand form
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Tanner graph of code
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CKBB Surgery Method [2110.10794]

Original codeX

Z

X

S

L

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7



CKBB Surgery Method [2110.10794]
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CKBB Surgery Method [2110.10794]

Add one ancilla qubit for each  X  check.

Same incidence relation as in L .
Create one ancilla  Z  check for each qubit in L .
Once we connect ancilla system to the code,

Product of ancilla  Z  checks = Z logical operator!

Are we done?

Ancilla System
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Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7



CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 8



CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.
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CKBB Surgery Method [2110.10794]

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021].

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.

Original 
code

I
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I

I
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Z

X

S

X

I
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Z
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Advantage: applicable to any QLDPC code,

Issue: space overhead ~ O(d2), similar to surface code!

I

I

I

I

8



Outline

• Background and Motivation

○ Quantum LDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code



New Approach: Auxiliary Graph Surgery
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New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = ( V , E ), 

with one vertex per qubit in L .
2. One new  Z  check for every vertex in V . 

3. One new ancilla qubit for every edge in E .

4. Connect E  qubits to  X  checks on L .
5. Pick a cycle basis C  of G. For each cycle basis 

element, introduce an  X  check.

6. Product of new Z checks = Z logical operator

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

M

OK… what about code distance?
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Expansion brings fault-tolerance

Let P be another Z operator, U  be a set of ancilla checks,
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Expansion brings fault-tolerance

GT
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Z
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Z

X
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X

V

E

C

P’
U

Let P be another Z operator, U  be a set of ancilla checks,

P’ = P × UGT

Issue: P’ may have lower weight than P → merged code 

has lower distance!

Solution: if G is expanding (large Cheeger constant), then 

U  has large support UGT in E .

Other ways to reduce distance? 

Not if we measure the cycles C .
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We want: 
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2. Merged code should be LDPC at all stages
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We want: 

1. Code should preserve distance of original code. 

2. Merged code should be LDPC at all stages

Graph G  should have the following properties:

1. G  is expanding; 

2. All vertices have O(1) degree. 

Graph Desiderata

Ingredient #1: choose a randomly constructed 

constant-degree expander graph.
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* stick figure credit: xkcd.com

Desiderata 3: perfect matchings on graph G
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M deforms the original X stabilizers to edge 
qubits E. 
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Desiderata 3: perfect matchings on graph G

M deforms the original X stabilizers to edge 
qubits E. 

The original X stabilizers overlap L on an even 
number of qubits.

18



GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

even wt {

Desiderata 3: perfect matchings on graph G

M deforms the original X stabilizers to edge 
qubits E. 

The original X stabilizers overlap L on an even 
number of qubits.

 ⟺ original X stabilizers anti-commute with an 
even number of new vertex Z stabilizers V.
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Desiderata 3: perfect matchings on graph G
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Ingredient #2: come up with a 
(short) perfect matching on G 

M deforms the original X stabilizers to edge 
qubits E. 

The original X stabilizers overlap L on an even 
number of qubits.

 M is just a way to break up the 
even sized set of vertices → pairs of vertices 
i.e. a matching on this graph

length of matching 
= # of edges in this path b/w paired vertices 
= # of extra qubits supp. deformed X stabilizers

18



Graph Desiderata

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

N

We want: 

1. Code should preserve distance of original code. 

2. Merged code should be LDPC at all stages

Graph G  should have the following properties:
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2. All vertices have O(1) degree 

3. Short perfect matchings on G  (For original X checks) 
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N corresponds to cycles in the graph G.

G
● Each edge isn’t in too many cycles

● Each cycle* isn’t too long.

To ensure N is sparse,

*element of the cycle basis

 stick figure credits: xkcd.com 21



Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph
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Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

A cycle basis to begin with [Freedman Hastings 2020]
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Ingredient #3: a notion of “decongesting” cycles in a graph



Cycles   =  X-checks

Edges  =  qubits

G

Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

A cycle basis to begin with [Freedman Hastings 2020]

Input: graph G with O(1) vertex degree

Output: a cycle basis s.t. 

each cycle overlaps with at most O(log3  (|V|)) cycles.

23

Ingredient #3: a notion of “decongesting” cycles in a graph



Desiderata 4: Sparse cycle basis for graph G

G

Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

24

Ingredient #3: a notion of “decongesting” cycles in a graph
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Desiderata 4: Sparse cycle basis for graph G

G

Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

24

Ingredient #3: a notion of “decongesting” cycles in a graph



● Each cycle basis element has O(1) edges

G

Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

Also “cellulate” long cycles into smaller cycles

25

Ingredient #3: a notion of “decongesting” cycles in a graph



Graph Desiderata
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We want: 

1. Code should preserve distance of original code. 

2. Merged code should be LDPC at all stages

Graph G  should have the following properties:

1. G  is expanding; ✓ 

2. All vertices have O(1) degree ✓ 

3. Short perfect matchings on G  (For original X checks) ✓

& each edge is in O(1) matchings. ✓

4. G  has a sparse cycle basis. ✓
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(i) initialize

Overall protocol for auxiliary graph qLDPC surgery
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(i) initialize (ii) merge step

Overall protocol for auxiliary graph qLDPC surgery
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(i) initialize (ii) merge step (iii) split step

Overall protocol for auxiliary graph qLDPC surgery
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✔ Applicable to any quantum LDPC code!
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In summary: auxiliary graph qLDPC surgery
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Qubit overhead of scheme: O(d log3 (d))

~  O(d) in distance d, upto polylog

✔ Applicable to any quantum LDPC code!
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Qubit overhead of scheme: O(d log3 (d))

~  O(d) in distance d, upto polylog

⇒  Significant improvement in overhead from 

previous scheme for arbitrary quantum LDPC 

codes, O(d2)  

✔ Applicable to any quantum LDPC code!
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This would mean exponentially many auxiliary graphs for each of the ~ 4k logical operators!

Joint measurements of products of logical Pauli operators, say X1Z2Z3, etc.. (without 

simultaneously measuring individual Paulis)  

Construct a large auxiliary graph on the entire logical.
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This would mean exponentially many auxiliary graphs for each of the ~ 4k logical operators!

Can we break up the problem?

Joint measurements of products of logical Pauli operators, say X1Z2Z3, etc.. (without 

simultaneously measuring individual Paulis)  

Construct a large auxiliary graph on the entire logical.

What about Pauli products?
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Is there a way to connect graphs constructed to measure individual Pauli logicals ?

Joint-measurements: a modular approach
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Joint-measurements: a modular approach

New cycles are at most length 8 ≡ new X stabilizers are at most weight 8

~ needs only d extra edges ≡ d extra qubits

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?
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Universal adapter: a new primitive
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Significance : These can be arbitrary* logical operators in the LDPC code, 
they could belong to the same or different codeblocks, or even different quantum codes

Universal adapter: a new primitive

A “Universal” way to connect between any two logical operators in quantum LDPC codes

36[Universal Adapters between quantum LDPC codes], 2410.03628



Universal adapter: Connecting different qLDPC codes

● Arbitrary joint-measurements in the same or different codeblocks

● multi-code architectures…

Can be useful for teleportation, transversal gates, magic state factory, code-switching…

Can leverage known symmetries in codes, and implement these gates on logical qubits of other codes.
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● Addressable gates for multi-qubit code blocks

● A “universal” scheme applicable to arbitrary quantum LDPC codes

● Space overhead is only ~linear - which is a quadratic improvement over previous schemes;

the LDPC overhead advantage is now beginning to show even for logical gate schemes.

● Can connect arbitrary codes for multi-code architectures with just ~d extra qubits 

allowing one to leverage unique advantages of different codes, while keeping architecture 

LDPC.

In Summary
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Previous Proposal for Logical Computation

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]

Uses 1380 ancilla qubits.

Teleport logical information into a 

surface code patch to do computation.
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New Proposal for Logical Computation
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New Proposal for Logical Computation

Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.
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New Proposal for Logical Computation

Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.

Automorphism gates + logical measurement = 

Full logical Clifford group!

Promising numerical benchmarking.
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Logical Computation on QLDPC Codes through Surgery

With Case Study on Bivariate Bicycle codes

Andrew Cross, Zhiyang He (Sunny), Tomas Jochym-O’Connor, Patrick Rall, Esha Swaroop, Dominic Williamson, Theodore Yoder

The End


