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Quantum error correction is a fundamental building
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Basics of QEC

Quantum error correction is a fundamental building
block of large-scale quantum computation.

One of the most promising codes: Surface Code.
1.  Built on a 2D lattice of qubits.
2. Parameters [n= 217 k=1,d =L].
3. Experimental demonstration of subthreshold
scaling by Google*.
Challenge:
1.  Significant space overhead (~1000x)!

* Quantum error correction below the surface code threshold [Google and collaborators (2024)] ** Surface code figure credit to Niel de Beaudrap. 1
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Quantum Low-Density Parity-Check (LDPC) Codes:
stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!




Quantum LDPC Codes: the Tradeoft

Quantum Low-Density Parity-Check (LDPC) Codes:

stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!

Practically: many codes with nice parameters, such
as the quasi-cyclic lifted product codes and IBM’s
[n = 144, k = 12, d = 12] Bivariate Bicycle Code.*

Theoretically: Asymptotically good codes with
k,d = O(n).**

B) Tanner Graph of the [[144,12,12]] Bivariate Bicycle Code
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* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]
** Asymptotically Good Quantum and Locally Testable Classical LDPC Codes [Panteleev Kalachev 2021]
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The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,
how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical
computation that are:
1.  Fault-tolerant;
2. Addressable: capable of addressing subsets of
logical qubits in multi-qubit codeblocks;
3. Universal;

4. Low cost in space and time. e . e
—
This is the central problem in the study of QLDPC codes. GPT4 Impression of

“Quantum Hardware based on QLDPC codes”.




Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable,
universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes.
Andrew Cross, Zhiyang He, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators.
Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.
Esha Swaroop, Tomas Jochym-O’Connor, Theodore Yoder. 2410.03628




Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable,
universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes.
Andrew Cross, Zhiyang He, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators.
Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.

Esha Swaroop, Tomas Jochym-O’Connor, Theodore Yoder. 2410.03628

Other related works: 2407.09423 (Cowtan), 2407.18490 (Xu et al.), 2408.01339 (Zhang, Li),
2410.02753 (Ide et al.).
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Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.



Logical Measurement and Lattice Surgery

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.

O Data qubit [ Z stabilizer X stabilizer B Measured Z stabilizer ] Measured X stabilizer
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* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020]. 5§



Logical Measurement and Lattice Surgery

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.

O Data qubit [ Z stabilizer X stabilizer B Measured Z stabilizer ] Measured X stabilizer
b
it
of) (9]
k) lop) zM X" )
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Merge —_— Teleport
08 @™ [y ) +1£y @2 X IwE)
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Product of red X-checks = X; ® X, — obtain logical measurement result by measuring new stabilizers.

* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020]. 5§



Quantum LDPC Surgery




Quantum LDPC Surgery

Tanner graph of code Shorthand form




Quantum LDPC Surgery

Tanner graph of code Shorthand form

IELX_l QLDPC code

Logical operator
to measure




Quantum LDPC Surgery

Tanner graph of code Shorthand form

IELX_l QLDPC code

/ rest of the qubits

Logical operator
to measure




Quantum LDPC Surgery

Tanner graph of code Shorthand form

IELX_l QLDPC code

/ rest of the qubits

Logical operator
to measure




CKBB Surgery Method [2110.10794]

| X Original code

[z

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7
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CKBB Surgery Method [2110.10794]

| X Original code

Ancilla System Add one ancilla qubit for each [X]check.
I I
q Y, X / Same incidence relation as in L.
S gT Create one ancilla[Z |check for each qubit in L.
|-——| I Once we connect ancilla system to the code,
Z | Z

Product of ancilla checks = Z logical operator!

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021].



CKBB Surgery Method [2110.10794]

| X Original code &Ar e we done?
Ancilla System Add one ancilla qubit for each [X]check.
I I
Y, X / Same incidence relation as in L.
S gT Create one ancilla[Z |check for each qubit in L.
|-——| I Once we connect ancilla system to the code,
Z | Z

Product of ancilla checks = Z logical operator!

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021].



CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 8



CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.

Original
code

—d

&0
-
-
-
8
-

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021].

8



CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

X Original
code

Solution: Repeat for O(d) layers.

S ST S ST S ST
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Advantage: applicable to any QLDPC code,

Issue: space overhead ~ O(d?), similar to surface code!

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 8
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Build a customized graph G = (11, &€),
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One new ancilla qubit for every edge in £.
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Build a customized graph G = (11, &€),

with one vertex per qubit in L.

One new |Z |check for every vertex in (}.

One new ancilla qubit for every edge in £.
Connect € qubits to [X]checks on L.

Pick a cycle basis C of G. For each cycle basis
element, introduce an | X |check.
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Product of new Z checks = Z logical operator
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New Approach: Auxiliary Graph Surgery

Original code

X
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Build a customized graph G = (11, &€),

with one vertex per qubit in L.

One new |Z |check for every vertex in (}.

One new ancilla qubit for every edge in £.
Connect € qubits to [X]checks on L.

Pick a cycle basis C of G. For each cycle basis
element, introduce an | X |check.

Product of new Z checks = Z logical operator

OK... what about code distance?




Expansion brings fault-tolerance

Let P be another Z operator, 1L be a set of ancilla checks,

ol

Original code | X
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Z ]
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Expansion brings fault-tolerance

Let (P be another Z operator,

be a set of ancilla checks,

Original code | X P =@ x UGT
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Expansion brings fault-tolerance

Let P be another Z operator, 1L be a set of ancilla checks,

Original code | X P =@ x UuGT

Issue: P’ may have lower weight than @ — merged code

has lower distance!
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Expansion brings fault-tolerance

Original code

[

Let P be another Z operator, 1L be a set of ancilla checks,

P'=@ x UG’

Issue: P’ may have lower weight than @ — merged code
has lower distance!

Solution: if C}"is expanding (large Cheeger constant), then
has large support UG in €.
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Expansion brings fault-tolerance

Original code

[

Let P be another Z operator, 1L be a set of ancilla checks,

P'=@ x UG’

Issue: P’ may have lower weight than @ — merged code
has lower distance!

Solution: if C}"is expanding (large Cheeger constant), then
has large support UG in €.

Other ways to reduce distance?

Not if we measure the cycles C.

13
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Graph Desiderata

We want:

1. Code should preserve distance of original code.

Graph G should have the following properties:

1.

G is expanding;

14
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We want:
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Graph Desiderata

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:
1. G isexpanding;

2. All vertices have O(1) degree.
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Original code

Graph Desiderata

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:
1. G isexpanding;

2.  All vertices have O(1) degree.

9 Ingredient #1: choose a randomly constructed

constant-degree expander graph.

16



Desiderata 3: perfect matchings on graph G

I._XI Original code I._XI
C
N
— M
O X @ €
S GT
[z L 7 G
L Vs

* stick figure credit: xked.com 17/
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Desiderata 3: perfect matchings on graph G

Original code
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M deforms the original X stabilizers to edge
qubits &
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Desiderata 3: perfect matchings on graph G

Original code
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M deforms the original X stabilizers to edge
qubits &

The original X stabilizers overlap Lon an even
number of qubits.
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Desiderata 3: perfect matchings on graph G

Original code

J

Cc
N
_ Q
- 0)e
evenwt {| s G’
1 ZI
¥

=)

M deforms the original X stabilizers to edge
qubits &

The original X stabilizers overlap Lon an even
number of qubits.

& original X stabilizers anti-commute with an
even number of new vertex Z stabilizers (-

18
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Desiderata 3: perfect matchings on graph G

Original code
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M deforms the original X stabilizers to edge
qubits &

The original X stabilizers overlap Lon an even
number of qubits.

M is just a way to break up the
even sized set of vertices — pairs of vertices
i.e. a matching on this graph
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Desiderata 3: perfect matchings on graph G

Original code

J

Cc
N
F— e
evenwt {| s G’
1 ZI
¥

=)

M deforms the original X stabilizers to edge
qubits &

The original X stabilizers overlap Lon an even
number of qubits.

M is just a way to break up the
even sized set of vertices — pairs of vertices
i.e. a matching on this graph

length of matching
= # of edges in this path b/w paired vertices
= # of extra qubits supp. deformed X stabilizers

18
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Desiderata 3: perfect matchings on graph G

Original code

J

Cc
N
F— e
evenwt {| s G’
1 ZI
¥

=)

M deforms the original X stabilizers to edge
qubits &

The original X stabilizers overlap Lon an even

number of qubits.
Q o

M is just a way to break up the
even sized set of vertices — pairs of vertices
i.e. a matching on this graph

C}" length of matching
= # of edges in this path b/w paired vertices
= # of extra qubits supp. deformed X stabilizers

Ingredient #2: come up with a
(short) perfect matching on C}

18
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Original code

Graph Desiderata
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We want:
1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

@ Q O—C(? Graph G should have the following properties:
e

1. G isexpanding;

- % 2.  All vertices have O(1) degree
3.

Short perfect matchings on G (For original X checks)

19
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Original code

C
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S GT
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Graph Desiderata

Q

i
j¥

G

We want:
1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:
1. G isexpanding;
2.  All vertices have O(1) degree

3. Short perfect matchings on G (For original X checks)
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Desiderata 4: Sparse cycle basis for graph G
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Desiderata 4: Sparse cycle basis for graph G

x| Original code < .
)
) XH— @ &
S a7

[z 1z
L Vs

N corresponds to cycles in the graph G.
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Desiderata 4: Sparse cycle basis for graph G

Original code

x

(]

M©8

Cc

GT

N corresponds to cycles in the graph G.

To ensure N is sparse,
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Desiderata 4: Sparse cycle basis for graph G

Original code

X

C
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N corresponds to cycles in the graph G.

To ensure N is sparse,

stick figure credits: xked.com 21
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Desiderata 4: Sparse cycle basis for graph G

Original code

N corresponds to cycles in the graph G.

C
@l To ensure N is sparse,
S M
[X @ e
S GT
1
- G
° Vs e FEach edge isn’t in too many cycles

stick figure credits: xked.com 21
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Desiderata 4: Sparse cycle basis for graph G

Original code

N corresponds to cycles in the graph G.

X

Ncll To ensure N is sparse,
F— e
S GT
1 > 9
L b e Each edgeisn’t in too many cycles

e Each cycle* isn’t too long.

*element of the cycle basis

stick figure credits: xked.com 21



Desiderata 4: Sparse cycle basis for graph G

Ensuring the cycle basis of graph is sparse :

e FEach edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph
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Ensuring the cycle basis of graph is sparse :

e FEach edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph

A cycle basis to begin with [Freedman Hastings 2020]
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Desiderata 4: Sparse cycle basis for graph G

Cycles

Edges

= X-checks

qubits

Ensuring the cycle basis of graph is sparse :

e FEach edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph

A cycle basis to begin with [Freedman Hastings 2020]

Input: graph G with O(1) vertex degree
Output: a cycle basis s.t.
each cycle overlaps with at most O(log?® (|V|)) cycles.

23



Desiderata 4: Sparse cycle basis for graph G

Ensuring the cycle basis of graph is sparse :

e FEach edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph
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Ensuring the cycle basis of graph is sparse :
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Desiderata 4: Sparse cycle basis for graph G

Ensuring the cycle basis of graph is sparse :

e Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph
m m e

-

24



Desiderata 4: Sparse cycle basis for graph G

Ensuring the cycle basis of graph is sparse :

e Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph

o & A
¢ X T

Also “cellulate” long cycles into smaller cycles

>

<

e Each cycle basis element has O(1) edges

25
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Original code
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Graph Desiderata

We want:
1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:
1. G isexpanding; v

2. All vertices have O(1) degree v

3.  Short perfect matchings on G (For original X checks) ¢/
C}" & each edge is in O(1) matchings. v/

4. G has a sparse cycle basis. v

26



Overall protocol for auxiliary graph qLDPC surgery

®)
S I
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(i) initialize
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Overall protocol for auxiliary graph qLDPC surgery

GG
® & 0(d)
measurements
S I —_—
©
Lz
(i) initialize (i1) merge step
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Overall protocol for auxiliary graph qLDPC surgery

r\ r\
measurements measurements
S I —_—  ——— S I
& ©
Ly Lz
(i) initialize (ii) merge step (iii) split step

27
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In summary: auxiliary graph qLDPC surgery

Original code I._XI
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v Applicable to any quantum LDPC code!
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In summary: auxiliary graph qLDPC surgery

Gl @l I._XI v Applicable to any quantum LDPC code!
C
N
_ M Qubit overhead of scheme: O(d log? (d))
| X & ~ 0O(d) in distance d, upto polylog
S G'
I | |
| Z
C Vs
0(1) layers
(best-case)
to

0(log? d) layers
(worst-case)
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In summary: auxiliary graph qLDPC surgery

Original code

0(1) layers
(best-case)

to
0(log® d) layers

(worst-case)

v Applicable to any quantum LDPC code!

Qubit overhead of scheme: O(d log? (d))
~ 0(d) in distance d, upto polylog

= Significant improvement in overhead from
previous scheme for arbitrary quantum LDPC

codes, O(d?)

28
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Joint measurements of products of logical Pauli operators, say X
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@/What about Pauli products?

Joint measurements of products of logical Pauli operators, say X 72,7, etc.. (without
simultaneously measuring individual Paulis)

Construct a large auxiliary graph on the entire logical.

OOO

This would mean exponentially many auxiliary graphs for each of the ~ 4¥ logical operators!
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@/What about Pauli products?

Joint measurements of products of logical Pauli operators, say X 72,7, etc.. (without
simultaneously measuring individual Paulis)

Construct a large auxiliary graph on the entire logical.

OOO

This would mean exponentially many auxiliary graphs for each of the ~ 4¥ logical operators!

Can we break up the problem?

31
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o Universal Adapter for Joint-measurements



Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals ?
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Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?
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Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?
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Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?
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Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

Jrer /ey 1y /)

~ needs only d extra edges
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Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

Jrrr /iy 1/

~ needs only d extra edges = d extra qubits

New cycles are at most length 8 = new X stabilizers are at most weight 8
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Universal adapter: a new primitive
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Universal adapter: a new primitive

O0—G

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

[Universal Adapters between quantum LDPC codes], 2410.03628 35
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Universal adapter: a new primitive

C

Ty

pr—

C

o

O

Gy

Tr //'\ [—1
o/ '

H¢ Gg
L p, Py . -
/ 1

SkipTree(G) =T, P

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation
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Universal adapter: a new primitive

Significance : These can be arbitrary* logical operators in the LDPC code,
they could belong to the same or different codeblocks, or even different quantum codes

A “Universal” way to connect between any two logical operators in quantum LDPC codes

[Universal Adapters between quantum LDPC codes], 2410.03628



Universal adapter: Connecting different qLDPC codes

e Arbitrary joint-measurements in the same or different codeblocks

¢ multi-code architectures...

Can be useful for teleportation, transversal gates, magic state factory, code-switching...

Can leverage known symmetries in codes, and implement these gates on logical qubits of other codes.
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In Summary

Addressable gates for multi-qubit code blocks
A “universal” scheme applicable to arbitrary quantum LDPC codes
Space overhead is only ~linear - which is a quadratic improvement over previous schemes;

the LDPC overhead advantage is now beginning to show even for logical gate schemes.

Can connect arbitrary codes for multi-code architectures with just ~d extra qubits

allowing one to leverage unique advantages of different codes, while keeping architecture

LDPC.




Outline

 Case Study: [[144,12,12]] Bivariate bicyclic code



Case Study: [[144, 12, 12]] Bivariate Bicycle Code

B) Tanner Graph of the [[144,12,12]] Bivariate Bicycle Code

® ®
® ®

@
-

“

b
4

@®-0daa @ =@ data [ =[X]check M =[Z] check ‘A edge ‘B’ edge

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]
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Case Study: [[144, 12, 12]] Bivariate Bicycle Code

B) Tanner Graph of the [[144,12,12]] Bivariate Bicycle Code
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* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]
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Previous Proposal for Logical Computation

Cohenetal. 2022 ‘>
Ancilla System Surface Code

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]



Previous Proposal for Logical Computation

Uses 1380 ancilla qubits.
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Previous Proposal for Logical Computation

@q} ;ffff e

Cohen et al. 2022
Ancilla System

Uses 1380 ancilla qubits.

Teleport logical information into a

surface code patch to do computation.

)

Surface Code

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023] 41



New Proposal for Logical Computation
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New Proposal for Logical Computation
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Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.
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New Proposal for Logical Computation

o

ettty . . .
/ \ Uses 103 ancilla qubits, 13x savings.
X g 7 Use a bridge to perform joint measurement.
Automorphism gates + logical measurement =
Full logical Clifford group!
7 7Z)X

Promising numerical benchmarking.
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