
Logical Computation on QLDPC Codes through Surgery

With Case Study on Bivariate Bicycle codes

Andrew Cross, Zhiyang He (Sunny), Tomas Jochym-O’Connor, Patrick Rall, Esha Swaroop, Dominic Williamson, Theodore Yoder

Outline

• Background and Motivation

○ Quantum LDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

Basics of QEC

Quantum error correction is a fundamental building
block of large-scale quantum computation.

1

Basics of QEC

* Quantum error correction below the surface code threshold [Google and collaborators (2024)]

Quantum error correction is a fundamental building
block of large-scale quantum computation.

One of the most promising codes: Surface Code.
1. Built on a 2D lattice of qubits.
2. Parameters [n= 2L2, k = 1, d = L].
3. Experimental demonstration of subthreshold

scaling by Google*.
Challenge:

1. Significant space overhead (~1000x)!

** Surface code figure credit to Niel de Beaudrap. 1

Quantum LDPC Codes: the Tradeoff

Quantum Low-Density Parity-Check (LDPC) Codes:
stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!

2

Quantum LDPC Codes: the Tradeoff

Quantum Low-Density Parity-Check (LDPC) Codes:
stabilizers of O(1) weight, qubits in O(1) stabilizers.
Better encoding rate than surface code!

Practically: many codes with nice parameters, such
as the quasi-cyclic lifted product codes and IBM’s
[n = 144, k = 12, d = 12] Bivariate Bicycle Code.*

Theoretically: Asymptotically good codes with
k, d = O(n).**

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]
** Asymptotically Good Quantum and Locally Testable Classical LDPC Codes [Panteleev Kalachev 2021] 2

The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,

how do we compute on the logical qubits?

3

The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical
computation that are:

1. Fault-tolerant;

GPT4 Impression of
“Quantum Hardware based on QLDPC codes”.

3

The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of

logical qubits in multi-qubit codeblocks;

GPT4 Impression of
“Quantum Hardware based on QLDPC codes”.

3

The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of

logical qubits in multi-qubit codeblocks;
3. Universal;

GPT4 Impression of
“Quantum Hardware based on QLDPC codes”.

3

The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of

logical qubits in multi-qubit codeblocks;
3. Universal;
4. Low cost in space and time.

GPT4 Impression of
“Quantum Hardware based on QLDPC codes”.

3

The Challenge: Logical Computation on Quantum LDPC Codes

QLDPC codes could be >10x more space-efficient than
surface code. However,

how do we compute on the logical qubits?

For QLDPC codes, we need methods of performing logical
computation that are:

1. Fault-tolerant;
2. Addressable: capable of addressing subsets of

logical qubits in multi-qubit codeblocks;
3. Universal;
4. Low cost in space and time.

This is the central problem in the study of QLDPC codes. GPT4 Impression of
“Quantum Hardware based on QLDPC codes”.

3

Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable,
universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes.
Andrew Cross, Zhiyang He, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators.
Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.
Esha Swaroop, Tomas Jochym-O’Connor, Theodore Yoder. 2410.03628

4

Logical Computation on QLDPC Codes through Surgery

This talk: QLDPC surgery is a method of logical computation that is fault-tolerant, addressable,
universal, and low-overhead. Work done collectively in three papers.

1. Improved QLDPC Surgery: Logical Measurements and Bridging Codes.
Andrew Cross, Zhiyang He, Patrick Rall, Theodore Yoder. 2407.18393

2. Low-overhead fault-tolerant quantum computation by gauging logical operators.
Dominic Williamson, Theodore Yoder. 2410.02213

3. Universal adapters between quantum LDPC codes.
Esha Swaroop, Tomas Jochym-O’Connor, Theodore Yoder. 2410.03628

Other related works: 2407.09423 (Cowtan), 2407.18490 (Xu et al.), 2408.01339 (Zhang, Li),
2410.02753 (Ide et al.).

4

Outline

• Background and Motivation

○ QLDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

Logical Measurement and Lattice Surgery
Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.

Logical measurements on surface codes: lattice surgery.

5

Logical Measurement and Lattice Surgery

* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020].

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.

5

Logical Measurement and Lattice Surgery

* Figure from Entangling logical qubits with lattice surgery [Erhard et al 2020].

Product of red X-checks = XL ⛒ XL – obtain logical measurement result by measuring new stabilizers.

Pauli-based computation: Pauli measurements on logical qubits + magic states = universal computation.
Logical measurements on surface codes: lattice surgery.

5

Quantum LDPC Surgery

6

Quantum LDPC Surgery

Shorthand form

Z

X

Tanner graph of code

X X

Z Z

X

6

Quantum LDPC Surgery

Shorthand form

Z

X

Tanner graph of code

Logical operator
to measure

QLDPC code

X X

Z Z

X
X

Z

X

L

6

Quantum LDPC Surgery

Shorthand form

Z

X

Tanner graph of code

Logical operator
to measure

Qubits in L

QLDPC code

X X

Z Z

X
X

Z

X

L

rest of the qubits

6

Quantum LDPC Surgery

Shorthand form

Z

X

Tanner graph of code

Logical operator
to measure

Qubits in L

Incident checks

QLDPC code

S

X X

Z Z

X
X

Z

X

L

Incident relation

rest of the qubits

6

CKBB Surgery Method [2110.10794]

Original codeX

Z

X

S

L

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7

CKBB Surgery Method [2110.10794]

Create one ancilla Z check for each qubit in L .

I

Original codeX

Z Z

X

S

L

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7

CKBB Surgery Method [2110.10794]

Add one ancilla qubit for each X check.

Create one ancilla Z check for each qubit in L .

Ancilla System

I

I

Original codeX

Z Z

X

S

L

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7

CKBB Surgery Method [2110.10794]

Add one ancilla qubit for each X check.

Same incidence relation as in L .
Create one ancilla Z check for each qubit in L .

Ancilla System

I

I

ST

Original codeX

Z Z

X

S

L

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7

CKBB Surgery Method [2110.10794]

Add one ancilla qubit for each X check.

Same incidence relation as in L .
Create one ancilla Z check for each qubit in L .
Once we connect ancilla system to the code,

Product of ancilla Z checks = Z logical operator!

Ancilla System

I

I

Original codeX

Z Z

X

S

L

ST

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7

CKBB Surgery Method [2110.10794]

Add one ancilla qubit for each X check.

Same incidence relation as in L .
Create one ancilla Z check for each qubit in L .
Once we connect ancilla system to the code,

Product of ancilla Z checks = Z logical operator!

Are we done?

Ancilla System

I

I

Original codeX

Z Z

X

S

L

ST

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 7

CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 8

CKBB Surgery Method [2110.10794]

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.

Original
code

I

I

ST

Z

X

S
I

I

ST

Z

X

S

X

I

I

ST

Z

X

S

Z
L

I

I

I

I

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021]. 8

CKBB Surgery Method [2110.10794]

Low-overhead fault-tolerant quantum computing using long-range connectivity; [Cohen, Kim, Bartlett, Brown 2021].

Problem: merged code has lower distance, less fault-tolerant.

Solution: Repeat for O(d) layers.

Original
code

I

I

ST

Z

X

S
I

I

ST

Z

X

S

X

I

I

ST

Z

X

S

Z
L

Advantage: applicable to any QLDPC code,

Issue: space overhead ~ O(d2), similar to surface code!

I

I

I

I

8

Outline

• Background and Motivation

○ Quantum LDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

New Approach: Auxiliary Graph Surgery

Original codeX

Z

L

X

S

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .

Original codeX

Z

L

X

S

G

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .
2. One new Z check for every vertex in V .

Original codeX

Z

L
Z

X

S

V
G

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .
2. One new Z check for every vertex in V .

3. One new ancilla qubit for every edge in E .

GT

Original codeX

Z

L
Z

X

S

V

E

G

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .
2. One new Z check for every vertex in V .

3. One new ancilla qubit for every edge in E .

4. Connect E qubits to X checks on L .
GT

Original codeX

Z

L
Z

X

S

V

E

G

M

I

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .
2. One new Z check for every vertex in V .

3. One new ancilla qubit for every edge in E .

4. Connect E qubits to X checks on L .
5. Pick a cycle basis C of G. For each cycle basis

element, introduce an X check.

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

M

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .
2. One new Z check for every vertex in V .

3. One new ancilla qubit for every edge in E .

4. Connect E qubits to X checks on L .
5. Pick a cycle basis C of G. For each cycle basis

element, introduce an X check.

6. Product of new Z checks = Z logical operator

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

M

9

New Approach: Auxiliary Graph Surgery

1. Build a customized graph G = (V , E),

with one vertex per qubit in L .
2. One new Z check for every vertex in V .

3. One new ancilla qubit for every edge in E .

4. Connect E qubits to X checks on L .
5. Pick a cycle basis C of G. For each cycle basis

element, introduce an X check.

6. Product of new Z checks = Z logical operator

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

M

OK… what about code distance?

9

Expansion brings fault-tolerance

Let P be another Z operator, U be a set of ancilla checks,

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

P
U

10

Expansion brings fault-tolerance

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

P’
U

Let P be another Z operator, U be a set of ancilla checks,

P’ = P × UGT

10

Expansion brings fault-tolerance

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

P’
U

Let P be another Z operator, U be a set of ancilla checks,

P’ = P × UGT

Issue: P’ may have lower weight than P → merged code

has lower distance!

11

Expansion brings fault-tolerance

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

P’
U

Let P be another Z operator, U be a set of ancilla checks,

P’ = P × UGT

Issue: P’ may have lower weight than P → merged code

has lower distance!

Solution: if G is expanding (large Cheeger constant), then

U has large support UGT in E .

12

Expansion brings fault-tolerance

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

P’
U

Let P be another Z operator, U be a set of ancilla checks,

P’ = P × UGT

Issue: P’ may have lower weight than P → merged code

has lower distance!

Solution: if G is expanding (large Cheeger constant), then

U has large support UGT in E .

Other ways to reduce distance?

Not if we measure the cycles C .

13

Outline

• Background and Motivation

○ Quantum LDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

Graph Desiderata

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

We want:

1. Code should preserve distance of original code.

Graph G should have the following properties:

1. G is expanding;

I

N

14

Graph Desiderata

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding;

14

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding;

Graph Desiderata

15

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding;

2. All vertices have O(1) degree.

Graph Desiderata

16

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding;

2. All vertices have O(1) degree.

Graph Desiderata

Ingredient #1: choose a randomly constructed

constant-degree expander graph.

16

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

* stick figure credit: xkcd.com

Desiderata 3: perfect matchings on graph G

17

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

Desiderata 3: perfect matchings on graph G

M deforms the original X stabilizers to edge
qubits E.

17

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

even wt {

Desiderata 3: perfect matchings on graph G

M deforms the original X stabilizers to edge
qubits E.

The original X stabilizers overlap L on an even
number of qubits.

18

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

even wt {

Desiderata 3: perfect matchings on graph G

M deforms the original X stabilizers to edge
qubits E.

The original X stabilizers overlap L on an even
number of qubits.

 ⟺ original X stabilizers anti-commute with an
even number of new vertex Z stabilizers V.

18

Desiderata 3: perfect matchings on graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

even wt {

M deforms the original X stabilizers to edge
qubits E.

The original X stabilizers overlap L on an even
number of qubits.

18

M is just a way to break up the
even sized set of vertices → pairs of vertices
i.e. a matching on this graph

Desiderata 3: perfect matchings on graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

even wt {

M deforms the original X stabilizers to edge
qubits E.

The original X stabilizers overlap L on an even
number of qubits.

18

M is just a way to break up the
even sized set of vertices → pairs of vertices
i.e. a matching on this graph

length of matching
= # of edges in this path b/w paired vertices
= # of extra qubits supp. deformed X stabilizers

Desiderata 3: perfect matchings on graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

even wt {

Ingredient #2: come up with a
(short) perfect matching on G

M deforms the original X stabilizers to edge
qubits E.

The original X stabilizers overlap L on an even
number of qubits.

 M is just a way to break up the
even sized set of vertices → pairs of vertices
i.e. a matching on this graph

length of matching
= # of edges in this path b/w paired vertices
= # of extra qubits supp. deformed X stabilizers

18

Graph Desiderata

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding;

2. All vertices have O(1) degree

3. Short perfect matchings on G (For original X checks)

M

19

Graph Desiderata

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

GI

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding;

2. All vertices have O(1) degree

3. Short perfect matchings on G (For original X checks)

M

19

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

Desiderata 4: Sparse cycle basis for graph G

G

20

Desiderata 4: Sparse cycle basis for graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

N corresponds to cycles in the graph G.

G

20

Desiderata 4: Sparse cycle basis for graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

N corresponds to cycles in the graph G.

G

To ensure N is sparse,

21

Desiderata 4: Sparse cycle basis for graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

N corresponds to cycles in the graph G.

G

stick figure credits: xkcd.com

To ensure N is sparse,

21

Desiderata 4: Sparse cycle basis for graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

N corresponds to cycles in the graph G.

G
● Each edge isn’t in too many cycles

stick figure credits: xkcd.com

To ensure N is sparse,

21

Desiderata 4: Sparse cycle basis for graph G

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

N corresponds to cycles in the graph G.

G
● Each edge isn’t in too many cycles

● Each cycle* isn’t too long.

To ensure N is sparse,

*element of the cycle basis

 stick figure credits: xkcd.com 21

Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

Ingredient #3: a notion of “decongesting” cycles in a graph

22

Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

A cycle basis to begin with [Freedman Hastings 2020]

23

Ingredient #3: a notion of “decongesting” cycles in a graph

Cycles = X-checks

Edges = qubits

G

Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

A cycle basis to begin with [Freedman Hastings 2020]

Input: graph G with O(1) vertex degree

Output: a cycle basis s.t.

each cycle overlaps with at most O(log3 (|V|)) cycles.

23

Ingredient #3: a notion of “decongesting” cycles in a graph

Desiderata 4: Sparse cycle basis for graph G

G

Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

24

Ingredient #3: a notion of “decongesting” cycles in a graph

Desiderata 4: Sparse cycle basis for graph G

G

Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

24

Ingredient #3: a notion of “decongesting” cycles in a graph

Desiderata 4: Sparse cycle basis for graph G

G

Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

24

Ingredient #3: a notion of “decongesting” cycles in a graph

● Each cycle basis element has O(1) edges

G

Desiderata 4: Sparse cycle basis for graph G
Ensuring the cycle basis of graph is sparse :

● Each edge appears only in O(1) cycle basis elements

Also “cellulate” long cycles into smaller cycles

25

Ingredient #3: a notion of “decongesting” cycles in a graph

Graph Desiderata

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

G

M

I

N

We want:

1. Code should preserve distance of original code.

2. Merged code should be LDPC at all stages

Graph G should have the following properties:

1. G is expanding; ✓

2. All vertices have O(1) degree ✓

3. Short perfect matchings on G (For original X checks) ✓

& each edge is in O(1) matchings. ✓

4. G has a sparse cycle basis. ✓

26

(i) initialize

Overall protocol for auxiliary graph qLDPC surgery

27

(i) initialize (ii) merge step

Overall protocol for auxiliary graph qLDPC surgery

27

(i) initialize (ii) merge step (iii) split step

Overall protocol for auxiliary graph qLDPC surgery

27

✔ Applicable to any quantum LDPC code!

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

In summary: auxiliary graph qLDPC surgery

28

Qubit overhead of scheme: O(d log3 (d))

~ O(d) in distance d, upto polylog

✔ Applicable to any quantum LDPC code!

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

In summary: auxiliary graph qLDPC surgery

28

Qubit overhead of scheme: O(d log3 (d))

~ O(d) in distance d, upto polylog

⇒ Significant improvement in overhead from

previous scheme for arbitrary quantum LDPC

codes, O(d2)

✔ Applicable to any quantum LDPC code!

GT

Original codeX

Z

L
Z

X

S

X

V

E

C

M

I

N

In summary: auxiliary graph qLDPC surgery

28

Joint measurements of products of logical Pauli operators, say X1Z2Z3, etc.. (without

simultaneously measuring individual Paulis)

What about Pauli products?

29

Joint measurements of products of logical Pauli operators, say X1Z2Z3, etc.. (without

simultaneously measuring individual Paulis)

Construct a large auxiliary graph on the entire logical.

What about Pauli products?

29

This would mean exponentially many auxiliary graphs for each of the ~ 4k logical operators!

Joint measurements of products of logical Pauli operators, say X1Z2Z3, etc.. (without

simultaneously measuring individual Paulis)

Construct a large auxiliary graph on the entire logical.

What about Pauli products?

30

This would mean exponentially many auxiliary graphs for each of the ~ 4k logical operators!

Can we break up the problem?

Joint measurements of products of logical Pauli operators, say X1Z2Z3, etc.. (without

simultaneously measuring individual Paulis)

Construct a large auxiliary graph on the entire logical.

What about Pauli products?

31

Outline

• Background and Motivation

○ Quantum LDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

Is there a way to connect graphs constructed to measure individual Pauli logicals ?

Joint-measurements: a modular approach

32

Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

32

Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

33

Joint-measurements: a modular approach

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

33

Joint-measurements: a modular approach

~ needs only d extra edges

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

34

Joint-measurements: a modular approach

~ needs only d extra edges ≡ d extra qubits

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

34

Joint-measurements: a modular approach

New cycles are at most length 8

~ needs only d extra edges ≡ d extra qubits

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

34

Joint-measurements: a modular approach

New cycles are at most length 8 ≡ new X stabilizers are at most weight 8

~ needs only d extra edges ≡ d extra qubits

Is there a way to connect graphs constructed to measure individual Pauli logicals (efficiently)?

34

Universal adapter: a new primitive

35

Universal adapter: a new primitive

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

[Universal Adapters between quantum LDPC codes], 2410.03628 35

SkipTree(G) = T, P

Universal adapter: a new primitive

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

[Universal Adapters between quantum LDPC codes], 2410.03628 35

SkipTree(G) = T, P

Universal adapter: a new primitive

Key insight: any tree-like graph is equivalent to a repetition code up to a transformation

[Universal Adapters between quantum LDPC codes], 2410.03628 35

Significance : These can be arbitrary* logical operators in the LDPC code,
they could belong to the same or different codeblocks, or even different quantum codes

Universal adapter: a new primitive

A “Universal” way to connect between any two logical operators in quantum LDPC codes

36[Universal Adapters between quantum LDPC codes], 2410.03628

Universal adapter: Connecting different qLDPC codes

● Arbitrary joint-measurements in the same or different codeblocks

● multi-code architectures…

Can be useful for teleportation, transversal gates, magic state factory, code-switching…

Can leverage known symmetries in codes, and implement these gates on logical qubits of other codes.

37

● Addressable gates for multi-qubit code blocks

● A “universal” scheme applicable to arbitrary quantum LDPC codes

● Space overhead is only ~linear - which is a quadratic improvement over previous schemes;

the LDPC overhead advantage is now beginning to show even for logical gate schemes.

● Can connect arbitrary codes for multi-code architectures with just ~d extra qubits

allowing one to leverage unique advantages of different codes, while keeping architecture

LDPC.

In Summary

38

Outline

• Background and Motivation

○ Quantum LDPC Codes

○ Code Surgery Methods

• Auxiliary Graph Surgery on QLDPC Codes

○ Graph Desiderata

○ Universal Adapter for Joint-measurements

• Case Study: [[144,12,12]] Bivariate bicyclic code

Case Study: [[144, 12, 12]] Bivariate Bicycle Code

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023] 39

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]

Case Study: [[144, 12, 12]] Bivariate Bicycle Code

40

Previous Proposal for Logical Computation

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023] 41

Previous Proposal for Logical Computation

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]

Uses 1380 ancilla qubits.

41

Previous Proposal for Logical Computation

* High-threshold and low-overhead fault-tolerant quantum memory [Bravyi et al 2023]

Uses 1380 ancilla qubits.

Teleport logical information into a

surface code patch to do computation.

41

New Proposal for Logical Computation

42

New Proposal for Logical Computation

Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.

42

New Proposal for Logical Computation

Uses 103 ancilla qubits, 13x savings.

Use a bridge to perform joint measurement.

Automorphism gates + logical measurement =

Full logical Clifford group!

Promising numerical benchmarking.

42

Logical Computation on QLDPC Codes through Surgery

With Case Study on Bivariate Bicycle codes

Andrew Cross, Zhiyang He (Sunny), Tomas Jochym-O’Connor, Patrick Rall, Esha Swaroop, Dominic Williamson, Theodore Yoder

The End

