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The Basic Principles of QEC



— Start of almost every single talk on QEC.

First of all: What is QEC?

Quantum error correction is a fundamental building block of large-scale quantum computing.



Quantum Computing Power as a Resource

Discovery 

Application 

… and three (!) decades of amazing research 
on Algorithms, Simulations, Cryptography, 
Communications, and many more.

Acquisition of raw resource

Left to Right: IBM Eagle, Google Sycamore, QuEra Neutral Atoms.  
Many more: photonics, fermionics, ion traps…

Quantum Error Correction 
noun. The procedure of processing noisy quantum computing 
power into logical quantum computing power.



How is it even possible?

Qubits can be lost, superposition can collapse, 
and we are suffering from a continuous 
spectrum of errors. 

But, projective measurements can collapse 
the continuous spectrum of errors into 
discrete generating sets!

… and our story begins here.
From Peter Shor’s Green Family Lecture  

at IPAM, UCLA. Available on Youtube.

Peter’sTo protect quantum information, suffice for 
us to correct from this discrete set of errors. 



The Procedure of QEC

Logical Information

Encoding Map

Encoded Computation or 
Transmission

Decoding Map

Computation Result

Common Setting in Classical EC

Initialize physical qubits to |0⟩⊗n

Perform projective measurements 
into the codespace 

Decode and correct for errors

Apply logical operators and 
measure logical information

Common Setting in Quantum EC

Question: Why is the encoding circuit less discussed in the quantum setting?



Challenges and wishlist of QEC

Initialize physical qubits to |0⟩⊗n

Perform projective measurements 
into the codespace 

Decode and correct for errors

Apply logical operators and 
measure logical information

1. All operations are hardware-friendly; 

2. Every step should be fault-tolerant; 

3. The space and time overheads 
should be minimized; 

4. Efficient and high-performance 
decoding algorithm; 

5. Low logical error rate; 

6. Effective ways of implementing 
logical gates.

Wishlist

1. Hardwares are difficult to build  
and malleate; 

2. Errors can occur everywhere; 

3. More qubits or more runtime are 
both expensive; 

4. Errors may generate faster than 
we can decode; 

5. If error accumulates, logical 
information could be lost; 

6. Logical gates are difficult to 
perform without error.

Challenges



Stabilizer Codes, CSS, and 
the Greatest of Them All



Stabilizer Codes

Definition. Consider a commuting subgroup S of the n-qubit 
Pauli group G. They define a codespace as follows 

𝒞 = { |ψ⟩ : s |ψ⟩ = |ψ⟩, ∀s ∈ S} .

1. S is called the stabilizer group, they are the projective 
measurements.  

2. To correct from errors, we measure stabilizers s, and 
obtain syndromes. 

3. The continuous errors collapse into Pauli errors. 

4. We run a decoding algorithm (often classical) to find and 
apply Pauli corrections. 

5. If S has  independent generators (as a group), the 
codespace  encodes k logical qubits.

(n − k)
𝒞

Initialize physical qubits to |0⟩⊗n

Perform projective measurements 
into the codespace 

Decode and correct for errors

Apply logical operators and 
measure logical information



Stabilizer Codes, Continued…

1. How can we perform encoded/logical computation? We want 
operations that: 

a. triggers no syndrome, so they preserve the codespace ; 

b. is not in S, so they map logical states to logical states. 

2. These operators are called logical Pauli operators.  

3. A code has 2k independent logical Pauli operators, which acts 
as logical X or Z on the k logical qubits. 

4. Question: Which state in  is the logical  state now? 

5. If all logical Pauli operators has weight at least d, we say that 
the code has distance d. 

6. What about gates beyond Pauli? 

𝒞

𝒞 |0⟩⊗k



CSS Codes

Named after their inventors: Calderbank, Shor, 
and Steane. I once had to explain CSS codes in 
front of Peter Shor.* 

* He fell asleep.

— 90% of stabilizer codes we study.

Code qubits

-stabilizersX -stabilizersZ

Z

Z

Z

Z

X

X

X

X

n mZmX

𝔽n
2

𝔽mX
2

Adj. matrix HX

𝔽mZ
2

Adj. matrix HZ
Suppose we restrict our stabilizers, so that they 
can only be all X or all Z.

We can group the X-checks and Z-checks into two 
separate adjacency matrices.

Stabilizers commute:  

Classical codes: , 

HZH⊤
X = 0

CX = ker HX CZ = ker HZ

Question: What are the dimensions of  and ?HX HZ

This formalism enables us to bring decades of 
classical coding theory knowledge into QEC!



Toric code
— the greatest code of them all.

X X X
X

Z Z

ZZ
Z Z Z
Z

Z
Z

ZZ

Edges = qubits 
Vertices = -stabilizers 

Squares = -stabilizers

X
Z

Commute!{
Logical  operator: 

Commutes with all -stabilizers… (cycle)

Z
X

but is not a product of -stabilizers 
(not a boundary)

Z

Logical  operator: 

Commutes with all -stabilizers 

but is not a product of -stabilizers

X
Z

X

-qubit Toric code: 

Dimension , Distance 

N
k = 2 d = Θ( N)



Why is Toric Code the Greatest?

• For Practical QEC: Toric code admits many desirable properties (next slide!). Decades of academic and 
industrial research have been dedicated to building quantum architectures based on surface codes (later!).*

The Destined Toric Theorem (Shor, He) 

Given any conversation on QEC parametrized by time t, as , the 
conversation will eventually talk about the toric code.

t → ∞

* QEC was solved in 2001! — Researchers in QEC, after getting drunk.

• For Theoretical QEC: Toric code can be studied using tools from: 

• Mathematics: Algebraic topology (later!) 

• Physics: Condensed matter physics (2D Ising Model), led to topological QEC. 

• Computer Science: Graph algorithms and optimizations. 

• For Hamiltonian complexity: Toric code serves as a great model to instantiate theories on. 

• And many more…



Why is Toric Code the Greatest

1. All checks are spatially local on a 2D grid. 

2. Following decades of research, many engineering and 
theoretical techniques to control noise in surface codes. 

3. Toric code achieves the best parameters, assuming 
hardware is 2D and connections are local. (Later!) 

4. The Minimum-Weight Perfect Matching decoder works 
quite well in practice, highly optimized. 

5. Threshold: By using larger surface codes, logical error 
rate will decrease (kind of shown by experiments). 

6. Many proposals for fault-tolerant gates, notably lattice 
surgery.

1. All operations are hardware-friendly; 

2. Every step should be fault-tolerant; 

3. The space and time overheads 
should be minimized; 

4. Efficient and high-performance 
decoding algorithm; 

5. Low logical error rate; 

6. Effective ways of implementing 
logical gates.

Our WishlistToric/Surface Code

… from a practical perspective

Question: If Toric code is so great… Why are we here again?

… so far?



The Daunting Space Overhead

Craig Gidney & Martin Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits, 2021

Daniel Litinski, A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery, 2019 

“Assuming a physical error rate of 10−4 and a code cycle time of 1 μs, a classically intractable 100-qubit 
quantum computation with a T count of 108 and a T depth of 106 can be executed in 4 hours using 55,000 

qubits, in 22 minutes using 120,000 qubits, or in 1 second using 330,000,000 qubits.”

To perform logical measurements or gates 
on logical qubits, we often need to use a 

technique called lattice surgery.



Fundamental Limitation

Theorem. The BPT (Barvyi-Poulin-Terhal) Bound1 

For a quantum code, if its qubits can be placed in 2D such that all checks are 
spatially local, then its parameters must satisfy: 

O(n) ≥ k ⋅ d2

1 Tradeoffs for reliable quantum information storage in 2D systems

This theorem revealed the path beyond surface codes, and marked a fundamental bottleneck.

To get better parameters (both practically and theoretically), our checks must be non-local, 
i.e., reaching beyond nearest neighbors;

However,  it is very difficult to build hardwares with non-local connectivity. 

Question: What if we give up some distance?



The Era of NISQs
— Noisy Intermediate Scale Quantum Devices

We are now building quantum computers on tens to hundreds of physical qubits, 

through many different physical hardware, codes, and architectures.

With decades of hardware developments, we arrived at a turning point 

where we can finally imagine building non-local connections.

What world lies ahead?



QLDPC Codes, Finally!



Definitions

Quantum Low Density Parity Check (LDPC) Codes 

A family of stabilizer code is LDPC if every check acts on a constant number 
of qubits, and every qubit is involved in a constant number of checks.1 

1 Technically speaking, toric code is LDPC as well.

There are two important measures of hardware connectivity: 

1. Qubit degree: how many other qubits is a qubit connected to? 

2. Connection range: after embedding qubits into space, how long is the longest connection? 

The central question is, therefore:  

How much connectivity do we need, and how much better parameters do we get?

We sometimes say that locality is constant.



The Landscape

Theoretical Constructions in Asymptopia 

We want to construct families of codes such that as n grows, k and d grows 
with n while locality stays as . If possible, we want .O(1) k, d = Ω(n)

2009 - 2021

Practical Constructions for Hardware 

We want to construct find codes on the scale of hundreds to thousands of 
qubits, with parameters better than surface code and connectivity 

requirement as low as possible.

2019+

There are three important ingredients in most of modern theoretical and 
practical constructions of QLDPC codes. They come from three sources:  

Classical wisdom, the Toric code, and Algebraic Topology.



Invoking Classical Wisdom

n r

Parity 
checks

Code bits

1
1

Small sets

Definition. Expander graphs 

A degree d bipartite graph is an expander graph 
if any small set S of vertices on the left has a large 
neighborhood on the right.

Small:     Large: |S | ≤ O(n) |N(S) | ≥ O(d |S | )

Have large neighborhoods 
 

Many violated parity checks!
⇓

Classical LDPC Codes are often built with these 
expander graphs.

Asymptotically good cLDPCs: .k, d = Ω(n)



Invoking Classical Wisdom
… What now?

Question: If classical codes are so great, why don’t 
we use two of them to build a CSS code?

Code qubits

-stabilizersX -stabilizersZ

Z

Z

Z

Z

X

X

X

X

n mZmX

𝔽n
2

𝔽mX
2

Adj. matrix HX

𝔽mZ
2

Adj. matrix HZ

Question: OK, they may not commute… what if 
they do?

Let  be a vector that indicates the qubits 
involved in a particular Z-check. Then 

. 

What does this mean for the code ?

z ∈ 𝔽n
2

HXz = 0

CX



Torus in Topology

Edges = 1 Dimensional Objects 
Vertices = 0 Dimensional Objects 
Squares = 2 Dimensional Objects

Torus = Squares
∂2 Edges

∂1 Vertices

Question: What is the boundary of a square?

Boundary maps : 
A 2D object is mapped to all 1D objects on its boundary; 
A 1D object is mapped to all 0D objects on its boundary;

∂2, ∂1

Observe: Boundary of a set of squares have no boundary vertex! 
In mathematical terms, .∂1∂2 = 0

… Where is the code?



Where is the code?

X X X
X

Z Z

ZZ

A Z-check is mapped to all qubits on its boundary;

A X-check is mapped to all edges, whose boundary 
contains the X-check.

Toric Code = 𝔽 Z-checks
2

∂2 𝔽 Qubits
2

∂1 𝔽 X-checks
2

Question: What about X-checks?

Logical  operator: 

Commutes with all -stabilizers = cycle with no boundary; 

but is not a product of -stabilizers = not a boundary.

Z
X

Z

Toric code is CSS: let . 

.

∂2 = HT
Z , ∂1 = HX

∂1∂2 = 0 ⇔ HXHT
Z = 0

Takeaway: everything about the Toric code is described by its topology. *

* Sunny: “Qubits are holes.” Peter: “Yes?” The student who worked with us: “???” 



Quantum Codes and Topology

On one hand, every CSS code can be understood from topology.

CSS(HX, HZ) = 𝔽mZ
2

∂2=HT
Z 𝔽n

2
∂1=HX 𝔽mX

2

This inspiration from Toric code led to the entire field of topological QEC.

On the other hand, many topological objects can be studied as CSS codes.

How does that help us build QLDPC codes?



The Toric Code, Again.

The Infinite Toric Theorem (Shor, He) 

An infinitely long conversation on QEC will talk about the  
toric code an infinite number of times.

Question: What is the product of a circle with a circle?
(I didn’t define product for you, so just use intuition)

= ×

A little bit of Algebraic Topology



Where is the code now?

= ×
X X X

X

Z Z

ZZ

Toric code

1 1

(Classical) 
Repetition code

(Classical) 
Repetition code

See the board for mathematical formulation.



Classical code 
𝒞1

Classical code 
𝒞2

Quantum hypergraph product code 
𝒬 = ⊗

 

Locality 

[n, Θ(n), Θ(n)]
ℓ

 

Locality 

[n, Θ(n), Θ(n)]
ℓ

(Notation: [block length, dimension, distance])

 

Locality 

[[Θ(n2), Θ(n2), d = Θ(n)]]
2ℓ ⟹

Quantum Hypergraph Product Code

Tillich & Zémor, Quantum LDPC codes with positive rate and minimum distance proportional to , 2009n1/2



1 Numerical and analytical bounds on threshold error rates for hypergraph-product codes

Quantum Hypergraph Product Code

Hypergraph product codes to QLDPC is the same as toric code to QEC. 

• A decade of research dedicated to constructions, decoding, logical gates, and more. 

• There are small instances of HP codes, such as [[356, 36, 6]] or [[832, 64, 8]]1. Viable examples usually require a 
few hundred to a few thousand qubits. We’ll discuss more about small codes later. 

• Theoretical barrier: like Toric code, HP codes cannot have distance beyond n1/2. 

• We got stuck here for a decade, until…



… and a bit of Algebraic Topology

(Lifted Product Codes)



Here is a 3 by 6 Toric code. [[36, 2, 3]]

Let’s identify following vertices as one group 
(x, y) = (x + 2,y + 1) = (x + 4,y + 2)

And redraw according to this equivalence.

Blue squares are Z-checks, yellow vertices are X-checks.

This is now a [[12, 2, 3]] code.

Question: Wait… what just happened?

Quotient by Group Symmetry

This is .(ℤ6 × ℤ3)/ℤ3

Let’s play a game!



Quotient by Group Symmetry

A tremendous breakthrough, lead to many progress in QEC and complexity theory, including the NLTS Theorem.

1 A critical ingredient, ask me about it later.

Finite groups  Expander graphs⟹

‘Expanding’ local codes1
 Classical LDPC codes  HP codes  Lifted/Balanced Product codes.} ⟹ ⟹



QLDPC Codes, for Hardware

Lifted/balanced product codes lets us encode a lot more logical 
qubits using the same number of physical qubits.

Quantum hardware based on QLDPC codes 
By GPT4

[[625, 25, 6]] vs. [[544, 80,  12]] 

[[1225, 49, 8]] vs. [[1020, 136,  20]]

≤
≤

But, the fundamental challenge has not been addressed: 

Hardware connectivity is hard to improve!



A New Chapter

What if we can move our physical qubits around?

Neutral atoms hardware allows us to physically 
move qubits, enabling long-range connections 
and higher qubit degree.

This paper gives a proposal of how to implement 
lifted product codes with neutral atom arrays.



A New Chapter

[[144, 12, 12]] code with lots 
of good properties!

A similar [[126, 12, 10]] code.



Bivariate Bicycle Codes

1. [[144, 12, 12]] very good parameters on a 
very practical scale. 

2. Qubit degree 6, only 2 more than surface 
codes!  

3. Topologically close to a Torus, a rich 
example for future studies. 

4. Can be embedded into 2 planar layers, 
IBM’s bi-layer architecture. 

5. And many, many more. Check the paper!

Properties



Our Path Forward



QLDPC in 2024+

1. QEC operations need to be viable on hardware; 

2. Logical operations need to be fault-tolerant; 

3. The space and time overheads should be minimized; 

4. Efficient and high-performance decoding algorithm; 

5. Low logical error rate;

Our Wishlist

1. Hardware & QEC codesign. 

2. Overall, we are still lacking fault-tolerant ways to 
implement universal gates on QLDPC codes. 

3. QLDPC code shows a 10x space overhead over surface 
codes. We lacks data on time overhead; 

4. Currently, we mostly use Belief-Propagation + Order 
Statistic Decoding. We lack a truly quantum decoder.  

5. As a memory, QLDPC codes have comparable logical 
error rate to surface codes. But what about in 
computation?

Where we are

The Central Open Problem 

How can we do low-overhead, fault-tolerant logical 
gates on a practical QLDPC code?



An Exciting Time at A New Frontier

Two Talks I strongly recommend: 

Dolev Bluvstein, Logical quantum processor based on reconfigurable atom arrays, available on Youtube; 

Jeongwan Haah, What is Your Logical Qubit?, will be available on Youtube.

Many good talks here: 

QEC 2023, 6th International Conference on Quantum Error Correction, Sydney, available on Youtube;
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Many good works are being done. Surface code is not the end of practical QEC, but the beginning!
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