Protecting Memory with Constant-Time Decoding

Shouzhen Gu, Eugene Tang, Libor Caha, Shin Ho Choe, Zhiyang He (Sunny), Alesander Kubica

What do all of these words mean? \checkmark

Quantum Codes

Quantum Codes

Toric Code

Every edge is a qubit, Every vertex is a X-check, Every square is a Z-check.

A Z-error on a qubit triggers the X-checks on the endpoints.

Decoding of Quantum Codes

If we observe some X-syndrome, what is the most likely Z-error that occurred?

On the Toric code, this decoding problem is fairly simple: match the syndromes together!

But what if our syndromes could be wrong too?

Decoding of Quantum Codes

Phenomenological Noise Model:
Pauli errors on qubits, flip error on syndromes.

If a true syndrome disappeared and a fake syndrome appeared, our correction can be completely wrong.

What can we do?

Decoding of Quantum Codes

Natural Idea: Repeat measurements for d rounds to catch measurement errors.

Advantage: Very effective, widely used; Disadvantage:

- 1. O(d) quantum time overhead,
- 2. Decoding is often much slower.

Idea: can we design our code to protect against measurement errors?

Single-shot Decoding: under phenomenological noise, given one (1) round of measured noisy syndrome, can we decode so that the residue error is small? => reduces time overhead by a factor of d!

Q: What's the obstacle between many codes and singleshot decodability? A: Existence of large errors with small, uncorrectable syndromes.

We know two methods to overcome this obstacle:

- 1. Local redundancy in stabilizer checks;
- 2. Expansion of Tanner graph.

Existing codes with single-shot decoders:

- Topological Codes:
 - 4D toric code [BDMT17], 3D subsystem toric code [KV22], 3D gauge color code [Bom15]
 - These codes has local redundant checks, so we can detect & correct measurement errors locally.
- **Expansion Based QLDPC Codes:**
 - Quantum expander codes [FGL18]
 - Quantum Tanner codes [This work]
 - Expansion ensures that errors correctable by the decoder triggers many syndromes.
- See also [Cam19], which formulates and constructs redundant checks as 'meta-checks'.

Quantum LDPC Codes: All stabilizer checks have weight O(1), all qubits are touched by O(1) checks. Equivalently: The check adjacency graph of the code has constant degree. Good QLDPC Codes: [n, k, d] code - # of physical qubits = n, # of logical qubits = k, distance = d. A code is asymptotically good if $k, d = \Omega(n)$.

We focus on Quantum Tanner codes [LV22].

There are three constructions based on the same underlying ideas: [PK22], [LV22], [DHLV22]

Good Quantum LDPC Codes

I love the left-right Cayley complex! How can I build it at home?

- 1. Consider a group G and two generating sets, A and B.
- 2. Take 4 copies of the group G (drawn and placed disproportionally for artistic purposes)
- 3. Create A edges: For every $a \in A$, for every $g \in G_{00}$ or G_{10} , connect it to $ag \in G_{01}$ or G_{11} .
- 4. Create B edges: For every $b \in B$, for every

 $g \in G_{00}$ or G_{01} , connect it to $gb \in G_{10}$ or G_{11} . Great job! Enjoy your own left-right Cayley complex.

Good Quantum LDPC Codes

What about Quantum Tanner codes?

- Take the left-right Cayley complex we just built, and place a qubit on every square.
- 2. Now every vertex touches a total of $|A| \cdot |B|$ many such squares. On every vertex $g \in G_{00}$ and G_{11} , place some X-checks which acts on the incident squares.
- 3. Build Z-checks on $g \in G_{01}$ and G_{10} similarly. You just built an asymptotically good code!

Decoding problem: given syndromes on vertices in G₀₀ and G₁₁, find squares to flip to correct them.

Observe: every vertex $g \in G_{00}$ touches disjoint set of squares, so we can easily find correction C₀₀ that corrects all syndromes in G₀₀. Note that C₀₀ does NOT correct syndromes in G₁₁!

Similarly find correction C₁₁ for G₁₁. Define the mismatch vector as

$$Z = C_{00} \oplus C_{11} \in \mathbb{F}_2^n.$$

If Z is zero, then $C_{00} = C_{11}$ and we found a valid correction! This decoder is proposed by [LZ22].

Decoding idea: Greedily find vertices g, and corrections within g's neighborhood to reduce weight of mismatch.

Why does a greedy algorithm work? Intuitively,

- Expansion of complex => there always exists a vertex g that has too much mismatch.
- Robustness of local code => we can find a good flip within g's neighborhood.

Decoding idea: Greedily find vertices g, and corrections within g's neighborhood to reduce weight of mismatch.

Why does a greedy algorithm work? Intuitively,

- Expansion of complex => there always exists a vertex g that has too much mismatch.
- Robustness of local code => we can find a good flip within g's neighborhood.

What if there are measurement errors?

- Greedy, local decoder => measurement error is decomposed into local errors on mismatch vector.
- Expansion of complex => under such local errors, there always exists a vertex g that has too much mismatch.
- Robustness of local code => we can find a good flip within g's neighborhood.

with slight modifications, is single-shot in the following sense: such that

*Arbitrary error covers stochastic errors too.

- Main Results 1: Sequential Single-Shot Decoder (informal)
- For the quantum Tanner code, the sequential, linear time decoder of [LZ22],
- Denote qubit error as e, syndrome error as D. Suppose e, D are arbitrary errors* with linearly bounded weight: $|e|, |D| \leq O(n)$. Then there exists constant β

Residue error weight $\leq \beta |D|$.

modifications, is single-shot:

constant β such that if we run the parallel decoder for O(t) rounds,

- Main Results 2: Parallel Single-Shot Decoder (informal)
- For the quantum Tanner code, the parallel decoder of [LZ22], with slight
- Suppose e, D are arbitrary errors with linearly bounded weight. There exists
 - Residue error weight $\leq 2^{-\Omega(t)} |e| + \beta |D|$.
- For best decoding result, take $t = \log(n)$. Each round takes constant time.

rounds. If the noise is stochastic, the memory has a threshold.

for a final round of $O(\log n)$ time decoding.

- Main Results 3: Memory protected by constant-time decoding
- Given a decoder with our single-shot properties, a quantum memory under bounded noise can be protected for an exponential number of single-shot QEC
- Specifically, the constant-round parallel decoder of Main Result 2 suffices. A memory based on quantum Tanner codes has constant time-overhead, except

Protecting Memory with Constant-Time Decoding

Shouzhen Gu, Eugene Tang, Libor Caha, Shin Ho Choe, Zhiyang He (Sunny), Alesander Kubica

