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Single-Shot Decoding of Good Quantum LDPC Codes

What do all of these words mean?
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Quantum Codes

Z

X

Toric Code

Every edge is a qubit, 
Every vertex is a X-check, 
Every square is a Z-check.

A Z-error on a qubit triggers the 
X-checks on the endpoints.

Z

Z

Z



Decoding of Quantum Codes

If we observe some X-syndrome, what 
is the most likely Z-error that occurred?

Z

On the Toric code, this decoding 
problem is fairly simple: match the 
syndromes together!

But what if our syndromes could be 
wrong too?



Decoding of Quantum Codes

Phenomenological Noise Model: 
Pauli errors on qubits, flip error on 
syndromes.

Z

If a true syndrome disappeared and a 
fake syndrome appeared, our 
correction can be completely wrong.

What can we do?



Decoding of Quantum Codes

Natural Idea: Repeat measurements for 
d rounds to catch measurement errors.

Advantage: Very effective, widely used; 
Disadvantage:  
1. O(d) quantum time overhead,  
2. Decoding is often much slower.

Idea: can we design our code to protect 
against measurement errors?

Z



Single-Shot Decoding

Single-shot Decoding: under phenomenological noise, given one (1) round of measured noisy 
syndrome, can we decode so that the residue error is small?  
=> reduces time overhead by a factor of d!

Q: What’s the obstacle between many codes and single-
shot decodability? 
A: Existence of large errors with small, uncorrectable 
syndromes.

We know two methods to overcome this obstacle: 
1. Local redundancy in stabilizer checks; 
2. Expansion of Tanner graph.



Single-Shot Decoding

Existing codes with single-shot decoders: 

• Topological Codes: 

• 4D toric code [BDMT17], 3D subsystem toric code [KV22], 3D gauge color code [Bom15] 

• These codes has local redundant checks, so we can detect & correct measurement errors locally. 

• Expansion Based QLDPC Codes: 

• Quantum expander codes [FGL18] 

• Quantum Tanner codes [This work] 

• Expansion ensures that errors correctable by the decoder triggers many syndromes. 

• See also [Cam19], which formulates and constructs redundant checks as ‘meta-checks’.



Good Quantum LDPC Codes

Quantum LDPC Codes: All stabilizer checks have weight O(1), all qubits are touched by O(1) checks. 
Equivalently: The check adjacency graph of the code has constant degree.

Good QLDPC Codes: [n, k, d] code — # of physical qubits = n, # of logical qubits = k, distance = d. 

A code is asymptotically good if k, d = Ω(n) .

There are three constructions based on the same underlying ideas: [PK22], [LV22], [DHLV22] 
We focus on Quantum Tanner codes [LV22].



Good Quantum LDPC Codes

1. Consider a group G and two generating sets, A and B. 
2. Take 4 copies of the group G (drawn and placed 

disproportionally for artistic purposes) 

3. Create A edges: For every for every 

, connect it to . 

4. Create B edges: For every for every 

, connect it to . 

Great job! Enjoy your own left-right Cayley complex.

a ∈ A,

g ∈ G00 or G10 ag ∈ G01 or G11

b ∈ B,

g ∈ G00 or G01 gb ∈ G10 or G11

I love the left-right Cayley complex! How can I build it at home?

G00

G10

G01
G11



Good Quantum LDPC Codes

1. Take the left-right Cayley complex we just built, and 
place a qubit on every square. 

2. Now every vertex touches a total of many 

such squares. On every vertex , place 

some X-checks which acts on the incident squares. 

3. Build Z-checks on  similarly. 

You just built an asymptotically good code!

|A | ⋅ |B |

g ∈ G00 and G11

g ∈ G01 and G10

What about Quantum Tanner codes?

G00

G10

G01
G11



Decoding of Good Quantum LDPC Codes

G00

G11

Z = C00 ⊕ C11 ∈ 𝔽n
2 .

Decoding problem: given syndromes on vertices in G00 

and G11, find squares to flip to correct them.

Observe: every vertex  touches disjoint set of 
squares, so we can easily find correction C00 that corrects 
all syndromes in G00. Note that C00 does NOT correct 
syndromes in G11!

g ∈ G00

Similarly find correction C11 for G11. Define the mismatch 
vector as

If Z is zero, then C00 = C11 and we found a valid correction! 
This decoder is proposed by [LZ22].



Decoding idea: Greedily find vertices g, and corrections 
within g’s neighborhood to reduce weight of mismatch.

Why does a greedy algorithm work? Intuitively, 
• Expansion of complex => there always exists a vertex g 

that has too much mismatch. 
• Robustness of local code => we can find a good flip 

within g’s neighborhood.
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What if there are measurement errors? 
• Greedy, local decoder => measurement error is 

decomposed into local errors on mismatch vector. 
• Expansion of complex => under such local errors, there 

always exists a vertex g that has too much mismatch. 
• Robustness of local code => we can find a good flip 

within g’s neighborhood.
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Single-Shot Decoding of Good Quantum LDPC Codes

Main Results 1: Sequential Single-Shot Decoder (informal) 

For the quantum Tanner code, the sequential, linear time decoder of [LZ22], 
with slight modifications, is single-shot in the following sense: 

Denote qubit error as e, syndrome error as D. Suppose e, D are arbitrary errors* 
with linearly bounded weight: . Then there exists constant  
such that 

|e | , |D | ≤ O(n) β

Residue error weight ≤ β |D | .

*Arbitrary error covers stochastic errors too.



Single-Shot Decoding of Good Quantum LDPC Codes

Main Results 2: Parallel Single-Shot Decoder (informal) 

For the quantum Tanner code, the parallel decoder of [LZ22], with slight 
modifications, is single-shot: 

Suppose e, D are arbitrary errors with linearly bounded weight. There exists 
constant  such that if we run the parallel decoder for O(t) rounds,  

 

For best decoding result, take Each round takes constant time.

β

Residue error weight ≤ 2−Ω(t) |e | + β |D | .

t = log(n) .



Single-Shot Decoding of Good Quantum LDPC Codes

Main Results 3: Memory protected by constant-time decoding 

Given a decoder with our single-shot properties, a quantum memory under 
bounded noise can be protected for an exponential number of single-shot QEC 
rounds. If the noise is stochastic, the memory has a threshold. 

Specifically, the constant-round parallel decoder of Main Result 2 suffices. A 
memory based on quantum Tanner codes has constant time-overhead, except 
for a final round of  time decoding.O(log n)
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