
Time per shot for the ML
decoder on several different GPUs,
and BP-OSD. The distribution of
times for BP-OSD are shown via
the violin plots, whereas the average
time per shot of the ML decoder is
shown as a horizontal line. The 
BP-OSD implementation was run on
a AMD EPYC 9654 96-Core Processor
(2.4 GHz). 
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To include information about the code/syndrome measurement
circuit, we use masked self-attention inspired by [4]. 

Example mask for [[72,12,6]] bivariate

bicyle code (white indicates value of -∞).  
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We use a multi-step training process, similar to [5].

For the first step of training, the decoder autoregressively predicts
each logical error for each round of syndrome measurement.

Detection events from syndrome
measurement round i

For the next step of training, we remove the final linear and sigmoid
layers from the decoder for the first round of syndrome measurement,
and generate	c latent space predictions instead of k logical error
predictions. The loss is computed using the predictions from the last
N - 1 rounds.

This process is repeated until logical error predictions are only made
after the last round of syndrome measurement.

The ML decoder outperforms BP-OSD on the  [[72,12,6]] BB code,
both in terms of logical error rate and run time. Next steps could include
extending these results to larger BB codes, other qLDPC codes, as well
as streaming decoding, as well as investigating noise models beyond 
simple depolarizing noise.
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Recently proposed quantum low-density-parity-check (qLDPC) codes
[2, 9], using the belief propagation with ordered statistics decoding
(BP-OSD) [7] have achieved pseudo-thresholds comparable with the
surface code, but with much better encoding rates. 

However, the OSD step has a cubic runtime, leading to a desire for
faster decoding algorithms.

Inspired by the success of machine learning (ML) decoders for
decoding the surface code [1, 3] and data qubit noise for qLDPC
codes, [6], in this work we investigate using a transformer-based ML
decoder for circuit level noise on qLDPC codes, focusing on the
specific example of Bivariate Bicycle (BB) codes [2].
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Logical vs physical error rate for the ML
decoder and BP-OSD,evaluated on the
[[72,12,6]] bivariate bicycle code with
six rounds of noisy syndrome
measurement followed by a single round
of noiseless syndrome measurement.
Error bars indicate one standard
deviation. Third-order OSD was used for
BP-OSD. Note that the ML decoder uses
both X and Z check detection events, while
BP-OSD only uses X check detection events.

To evaluate the model, we compare the logical error rates and
runtimes to an open source BP-OSD implementation [8].
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