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The Promise of QLDPC Codes

Quantum error correction is a fundamental building block of large-scale quantum com-
putation. It is an expensive procedure with significant space and time overheads.

• The most studied approach uses the surface code, which has lots of amazing
properties: high threshold, 2D connectivity, and more.

• However, surface code costs a lot of physical qubits. To realize 2048-bit factoring,
we need ~1000 physical qubits per logical qubit.

• Quantum low-density parity-check (LDPC) codes have high encoding rate, and
promise to lower space cost significantly.

• However, performing logical computation on QLDPC codes is a long-standing
challenge. Intuitively, as these codes encode information much more compactly,
accessing and controlling information become harder.

Our works [1, 2], together with [3] (Poster 39), established code surgery as a promising
technique to perform logical computation on QLDPC codes. See also [4], which will
be presented on Friday. The methods we developed form the backbone of several
subsequent works [5, 6, 7], all of which will be presented on Wednesday.

Logical Measurements and Code Surgery

Code surgery, starting with lattice surgery, is a technique that enables fault-tolerant
measurements of logical Pauli operators. Logical measurements enable Pauli-based
computation (PBC), which is universal assuming a supply of magic states.
Pauli-based computation: logical measurements + magic state = universal computation.

Figure 1: Clifford and non-Clifford gates can be implemented by logical Pauli
measurements, supplied with resource states.

Surgery can be formulated in terms of code switching:
• Start with a code Q with stabilizer group S and logical operator P ;
• Introduce a set of ancilla qubits and define a new stabilizer group S ′ such that

P ∈ S ′. This new stabilizer code QP is called the measurement code;
• Measure S ′ for sufficient number of rounds, which lets us determine the

measurement outcome of P ;
• Measure S for sufficient number of rounds, which returns us to Q.

The key idea is that by introducing new stabilizers, the challenging measurement of high-
weight P is decomposed into many simple measurements of low-weight stabilizers.

Figure 2: Illustration of surface code lattice surgery, from [Erhard et al 2020].

Figure 3: High-level illustration of the process of QLDPC code surgery, with code
block Q, logical operator L, and ancilla system AL.

Code Surgery with Auxilliary Graph

Let us start with an arbitrary stabilizer code Q and an arbitrary Pauli operator P . Let
G = (V , E) be a measurement graph. We construct the measurement code as follows.

• For every edge in E , introduce an ancilla edge qubit;
• For every vertex in V , introduce an ancilla vertex check sv that acts on the adjacent

edge qubits by X .
• Connect vertex checks to qubits in P so that their product is P , ∏v∈V sv = P . Let

the stabilizers C of Q act on edge qubits by Z so that all stabilizers commute.
• Choose a basis of cycles U of G. For every cycle, add a cycle check that acts on

involved edges by Z.
By measuring all stabilizers for O(d) rounds, assuming certain conditions are met (see
Figure 4), we can fault-tolerantly measure P . For any code Q, any operator of weight w,
we can construct a LDPC measurement graph of size O(w(log w)3). This is a qualitative
improvement over O(w2) from prior work [8]. In practice, we can construct O(w) size
ancilla systems without LDPC guarantee [1, 2, 4, 7].

Figure 4: (Left) Graphical depiction of the ancilla system, constructed from a
graph G, connected to the measured logical operator P . (Right) Tanner graph
representation of the measurement code, with the code qubits and checks on the left
and ancilla qubits and checks on the right. All connections are labelled by symplectic
check matrices [X|Z]. Green conditions ensure that the measurement code is LDPC.
Blue conditions ensure the measurement code has high distance.

For a detailed and thorough discussion of these methods, please see Section 3 of [6].

Case Study: Bivariate Bicycle Code

We applied our methods to construct an ancilla system on the [[144, 12, 12]] BB Code.
This system enables us to perform 8 different measurements. When combined with the
automorphism gates of the code, we can perform the full logical Clifford group.
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Figure 5: 103-qubit Ancilla system constructed on BB code. Circles denote qubits,
boxes denote checks. The degree of qubits are displayed.
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